mofegiline and carbamylhydrazine

mofegiline has been researched along with carbamylhydrazine* in 2 studies

Trials

1 trial(s) available for mofegiline and carbamylhydrazine

ArticleYear
Haloallylamine inhibitors of MAO and SSAO and their therapeutic potential.
    Journal of neural transmission. Supplementum, 1994, Volume: 41

    Based on mechanistic understandings, molecular modeling and extensive quantitative structure-activity relationships, appropriately substituted haloallylamine derivatives were designed as potential mechanism-based inhibitors of MAO and/or SSAO. Potent inhibition of MAO-B and SSAO occurred with fluoroallylamines whereas chloroallylamines, such as MDL 72274A ((E)-2-phenyl-3-chloroallylamine hydrochloride), were selective and potent inhibitors of SSAO. MDL 72974A (E)-2-(4-fluorophenethyl)-3-fluoroallylamine hydrochloride is a potent (IC50 = 10(-9) M) inhibitor of both MAO-B and SSAO, with 190-fold lower affinity for MAO-A. In clinical studies, oral doses as low as 100 micrograms produced substantial inhibition of platelet MAO-B. Essentially complete inhibition occurred at 1 mg with the effect lasting 6-10 days. One or 4 mg MDL 72974A given daily for 28 days to 40 Parkinson's patients treated with L-dopa produced statistically significant reductions in the Unified Parkinson's Disease Rating Scale. MAO-B inhibitors, such as MDL 72974A and L-deprenyl, offer the potential of being neuroprotective in Parkinson's Disease and other neurogenerative disorders. Concommitant inhibition of SSAO may provide additional, but as yet unproven, advantages over pure inhibitors of MAO-B.

    Topics: Allyl Compounds; Amine Oxidase (Copper-Containing); Animals; Butylamines; Drug Evaluation; Humans; Male; Monoamine Oxidase Inhibitors; Oxidoreductases Acting on CH-NH Group Donors; Parkinson Disease; Propylamines; Rats; Rats, Sprague-Dawley; Semicarbazides

1994

Other Studies

1 other study(ies) available for mofegiline and carbamylhydrazine

ArticleYear
Assessment of the deamination of aminoacetone, an endogenous substrate for semicarbazide-sensitive amine oxidase.
    Analytical biochemistry, 1999, May-15, Volume: 270, Issue:1

    Methylglyoxal, a toxic aldehyde, has been reported to be increased in diabetes and has been claimed to be related to diabetic complications. Aminoacetone, an intermediate in the metabolism of threonine and glycine, has been proposed to be an endogenous substrate for semicarbazide-sensitive amine oxidase (SSAO). Methylglyoxal is the product. An HPLC procedure for the determination of SSAO activity toward aminoacetone in vitro is described. It was observed in previous assays that methylglyoxal formed via deamination of aminoacetone was quite unstable and led to erroneous results. o-Phenylenediamine (o-PD) was therefore employed for derivatization of methylglyoxal. o-PD does not affect SSAO activity and can be included in the enzyme reaction mixture for continuous trapping of methylglyoxal. This can avoid the loss of methylglyoxal during incubation. Deamination of aminoacetone by human umbilical artery SSAO was confirmed with this improved assay. The values of Km and Vmax, are 125.9 +/- 20.5 microM and 332.2 +/- 11.7 nmol/h/mg protein, respectively. Deamination of aminoacetone was nearly completely inhibited by 1 mM semicarbazide and 1 microM MDL-72974A, a potent selective SSAO inhibitor, whereas MAO inhibitors clorgyline (1 mM) and deprenyl (1 mM) had no inhibitory effect.

    Topics: Acetone; Allyl Compounds; Amine Oxidase (Copper-Containing); Benzylamines; Butylamines; Catalysis; Chromatography, High Pressure Liquid; Clorgyline; Deamination; Enzyme Inhibitors; Humans; Kinetics; Monoamine Oxidase Inhibitors; Phenylenediamines; Pyruvaldehyde; Selegiline; Semicarbazides; Umbilical Arteries

1999