mitoguazone has been researched along with 1-3-dihydroxy-4-4-5-5-tetramethyl-2-(4-carboxyphenyl)tetrahydroimidazole* in 2 studies
2 other study(ies) available for mitoguazone and 1-3-dihydroxy-4-4-5-5-tetramethyl-2-(4-carboxyphenyl)tetrahydroimidazole
Article | Year |
---|---|
Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum.
Nitric oxide (NO) and polyamines (PAs) are two kinds of important signal in mediating plant tolerance to abiotic stress. In this study, we observed that both NO and PAs decreased alkaline stress in tomato plants, which may be a result of their role in regulating nutrient balance and reactive oxygen species (ROS), thereby protecting the photosynthetic system from damage. Further investigation indicated that NO and PAs induced accumulation of each other. Furthermore, the function of PAs could be removed by a NO scavenger, cPTIO. On the other hand, application of MGBG, a PA synthesis inhibitor, did little to abolish the function of NO. To further elucidate the mechanism by which NO and PAs alleviate alkaline stress, the expression of several genes associated with abiotic stress was analyzed by qRT-PCR. NO and PAs significantly upregulated ion transporters such as the plasma membrane Na(+)/H(+) antiporter (SlSOS1), vacuolar Na(+)/H(+) exchanger (SlNHX1 and SlNHX2), and Na(+) transporter and signal components including ROS, MAPK, and Ca(2+) signal pathways, as well as several transcription factors. All of these play important roles in plant adaptation to stress conditions. Topics: Adaptation, Physiological; Antioxidants; Benzoates; Biological Transport; Calcium; Gene Expression Regulation, Plant; Hydroponics; Imidazoles; Mitogen-Activated Protein Kinases; Mitoguazone; Nitric Oxide; Plant Roots; Polyamines; Reactive Oxygen Species; Seedlings; Signal Transduction; Sodium Hydroxide; Sodium-Hydrogen Exchangers; Solanum lycopersicum; Stress, Physiological | 2014 |
Glucose-induced inhibition of seed germination in Lotus japonicus is alleviated by nitric oxide and spermine.
Seed germination is sensitive to glucose (Glc), nitric oxide (NO) and polyamine (PA). To elucidate whether cross-talk among Glc, NO and PAs occurs in mediation of seed germination, effects of Glc, NO and spermine on seed germination of Lotus japonicus were studied. Glc retarded seed germination in a concentration-dependent manner. NO donor sodium nitroprusside (SNP) alleviated Glc-induced inhibition of seed germination, whereas the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO) diminished the SNP-dependent alleviation of seed germination. These observations indicate that Glc may inhibit seed germination by interacting with NO signaling pathways. Exogenous spermine enhanced and the inhibitor of the spermine synthase, methylglyoxal-bis-guanyl hydrazone (MGBG), inhibited seed germination, respectively. Like SNP, spermine alleviated the Glc-induced inhibition of seed germination, whereas MGBG exaggerated the Glc-induced inhibition of seed germination. These results suggest that Glc may inhibit the spermine synthesis, leading to reductions in seed germination. NO scavenger and spermine synthase inhibitor diminished the SNP-induced alleviation of Glc-induced inhibition of seed germination. These findings reveal that both NO and spermine participate in the Glc-induced inhibition of seed germination in L. japonicus. Topics: Benzoates; Germination; Glucose; Imidazoles; Lotus; Mitoguazone; Nitrates; Nitric Oxide; Nitrites; Nitroprusside; Seeds; Spermine | 2009 |