minoxidil has been researched along with niacinamide in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (22.22) | 18.7374 |
1990's | 4 (44.44) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
Kau, ST; Li, JH; Zografos, P | 1 |
Garrino, MG; Henquin, JC; Plant, TD | 2 |
Atwal, KS | 1 |
Christensen, H; Drottning, P; Storstein, L | 1 |
Inukai, H; Murase, K; Park, JB; Ryu, PD; Tanifuji, M; Yamashita, S | 1 |
Ouyang, J; Zeng, QZ; Zhang, L; Zhang, S | 1 |
1 review(s) available for minoxidil and niacinamide
Article | Year |
---|---|
Pharmacology and structure-activity relationships for KATP modulators: tissue-selective KATP openers.
Topics: Action Potentials; Adenosine Triphosphate; Animals; Antihypertensive Agents; Benzopyrans; Cardiovascular Diseases; Cromakalim; Diazoxide; Guanidines; Guinea Pigs; Minoxidil; Muscle Relaxation; Muscle, Smooth, Vascular; Niacinamide; Nicorandil; Picolines; Pinacidil; Potassium Channels; Pyrans; Pyrroles; Radioligand Assay; Rats; Structure-Activity Relationship; Vasodilator Agents | 1994 |
8 other study(ies) available for minoxidil and niacinamide
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |
Comparison of the in vitro effects of K+ channel modulators on detrusor and portal vein strips from guinea pigs.
Topics: Animals; Benzopyrans; Cromakalim; Dose-Response Relationship, Drug; Glyburide; Guanidines; Guinea Pigs; In Vitro Techniques; Male; Minoxidil; Muscle, Smooth; Muscle, Smooth, Vascular; Niacinamide; Nicorandil; Pinacidil; Portal Vein; Potassium Channels; Potassium Chloride; Pyrroles; Vasoconstriction; Vasodilator Agents | 1992 |
Comparison of the effects of putative activators of K+ channels on pancreatic B-cell function.
Topics: Animals; Benzopyrans; Cromakalim; Diazoxide; Guanidines; In Vitro Techniques; Islets of Langerhans; Mice; Minoxidil; Niacinamide; Nicorandil; Pinacidil; Potassium Channels; Pyrroles; Vasodilator Agents | 1989 |
Effects of putative activators of K+ channels in mouse pancreatic beta-cells.
Topics: Adenosine Triphosphate; Animals; Benzopyrans; Cromakalim; Diazoxide; Electrophysiology; Female; Glucose; Guanidines; Homeostasis; In Vitro Techniques; Insulin; Insulin Secretion; Islets of Langerhans; Membrane Potentials; Mice; Minoxidil; Niacinamide; Nicorandil; Pinacidil; Potassium Channels; Pyrroles; Rubidium Radioisotopes | 1989 |
[Potassium channel openers. A new possible therapeutic principle in several diseases].
Topics: Antihypertensive Agents; Benzopyrans; Bronchodilator Agents; Cromakalim; Guanidines; Humans; Minoxidil; Niacinamide; Nicorandil; Pinacidil; Potassium Channels; Pyrroles; Vasodilator Agents | 1994 |
Possible presence of the ATP-sensitive K+ channel in isolated spinal dorsal horn neurons of the rat.
Topics: Adenosine Triphosphate; Animals; Cell Separation; Electric Stimulation; Electrophysiology; Glyburide; Minoxidil; Neurons; Niacinamide; Nicorandil; Potassium Channels; Rats; Rats, Sprague-Dawley; Spinal Cord | 1994 |
Structural characterization and dissolution profile of mycophenolic acid cocrystals.
Topics: 2,2'-Dipyridyl; Calorimetry, Differential Scanning; Crystallization; Drug Liberation; Hydrogen Bonding; Hydrogen-Ion Concentration; Minoxidil; Models, Molecular; Molecular Structure; Mycophenolic Acid; Niacinamide; Powder Diffraction; Powders; Solubility; X-Ray Diffraction | 2017 |