minoxidil and bay-k-8644

minoxidil has been researched along with bay-k-8644 in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (75.00)29.6817
2010's1 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Cuddon, P; Fleming, A; Floto, RA; Goldsmith, P; Jahreiss, L; O'Kane, CJ; Pask, D; Rubinsztein, DC; Saiki, S; Sarkar, S; Siddiqi, FH; Ttofi, EK; Williams, A1
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Lim, DY; Park, GH; Park, SH1

Other Studies

4 other study(ies) available for minoxidil and bay-k-8644

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Novel targets for Huntington's disease in an mTOR-independent autophagy pathway.
    Nature chemical biology, 2008, Volume: 4, Issue:5

    Topics: Animals; Autophagy; Calcium Channels, L-Type; Clonidine; Cyclic AMP; Humans; Huntington Disease; Imidazoline Receptors; Minoxidil; Protein Kinases; Signal Transduction; TOR Serine-Threonine Kinases; Type C Phospholipases; Verapamil

2008
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
Inhibitory mechanism of pinacidil on catecholamine secretion from the rat perfused adrenal gland evoked by cholinergic stimulation and membrane depolarization.
    Journal of autonomic pharmacology, 2000, Volume: 20, Issue:2

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Acetylcholine; Adrenal Glands; Animals; Calcium Channel Agonists; Catecholamines; Dimethylphenylpiperazinium Iodide; Drug Interactions; Male; Minoxidil; Nicotinic Agonists; Pinacidil; Potassium Channels; Rats; Rats, Sprague-Dawley; Vasodilator Agents

2000