minocycline has been researched along with quinupristin* in 5 studies
2 review(s) available for minocycline and quinupristin
Article | Year |
---|---|
[Therapeutic perspectives of linezolid in the management of infections due to multiresistant Gram-positive pathogens].
Multi-antibiotic resistant Gram-positive cocci represent emerging pathogens especially in the setting of the immunocompromised, hospitalized patients, in particular when surgery, invasive procedures, or prosthetic implants are of concern, patients are admitted in intensive care units, or underlying chronic disorders and immunodeficiency are of concern, and broad-spectrum antibiotics and/or immunosuppressive drugs are widely administered. The spectrum of available antimicrobial compounds for an effective management of these relevant infections is significantly impaired in selection and clinical efficacy by the emerging and spread of methicillin-resistant and more recently glycopeptide-resistant Gram-positive microbial strains linezolid, together with the recently licensed quinupristin-dalfopristin, daptomycin and tigecycline, followed by a number of glycopeptides, fluoroquinolones, and other experimental compounds represent an effective response to these concerns, due to their innovative mechanisms of action, their maintained or enhanced activity against multiresistant pathogens, their effective pharmacokinetic/pharmacodynamic properties, their frequent possibility of synergistic activity with other compounds effective against Gram-positive pathogens, and a diffuse potential for a safe and easy administration, also when compromised patients are of concern. The main problems related to the epidemiological and clinical features of multiresistant Gram-positive infection, the potential clinical indications of all recently available compounds compared with the standard of treatment of resistant Gram-positive infections, and updated data on efficacy and tolerability of linezolid have to be clarified. Topics: Acetamides; Administration, Oral; Anti-Infective Agents; Daptomycin; Drug Resistance, Multiple, Bacterial; Enterococcus; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Injections, Intravenous; Linezolid; Microbial Sensitivity Tests; Minocycline; Oxazolidinones; Practice Guidelines as Topic; Staphylococcus aureus; Streptococcus pneumoniae; Teicoplanin; Tigecycline; Time Factors; Vancomycin; Virginiamycin | 2007 |
[Other antimicrobial agents (linezolid, quinupristin/dalfopristin, glycylcycline etc)].
Topics: Acetamides; Bacteria; Drug Design; Drug Resistance, Bacterial; Humans; Linezolid; Minocycline; Oxazolidinones; Tetracyclines; Tigecycline; Virginiamycin | 2003 |
1 trial(s) available for minocycline and quinupristin
Article | Year |
---|---|
Treatment of vancomycin-resistant enterococcal infections in the immunocompromised host: quinupristin-dalfopristin in combination with minocycline.
Between February 1994 and November 1998, 56 oncology patients infected with vancomycin-resistant enterococci (VRE) were treated with quinopristin-dalfopristin (Q-D) plus minocycline (MIN). Infections included bacteremia, urinary tract infection, pneumonia, and wound infection. The response rate was 68%, and the most frequent adverse event was arthralgia or myalgia (36%). Q-D-MIN is effective for VRE infection in cancer patients but is associated with a substantial frequency of arthralgia or myalgia. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Anti-Bacterial Agents; Antineoplastic Agents; Child; Drug Therapy, Combination; Enterococcus; Enterococcus faecalis; Enterococcus faecium; Female; Gram-Positive Bacterial Infections; Humans; Immunity; Male; Middle Aged; Minocycline; Neoplasms; Pain; Vancomycin Resistance; Virginiamycin | 2001 |
2 other study(ies) available for minocycline and quinupristin
Article | Year |
---|---|
Pharmacogenomic strategies against microbial resistance: from bright to bleak to innovative.
The last decade saw an alarming increase in antibiotic resistance in infections, with more than 13 million deaths per year from infections. Counter strategies include hygiene, antibiotic restriction and new antibiotics such as quinupristin, linezolid, tigecycline, daptomycin and dalbavancin. Presently, pharmacogenomics with basic research is revealing new antimicrobial peptides and is applying old drugs in new ways to break resistance. New approaches with host-directed drug targeting emerge to circumvent resistance. A future systems perspective from large-scale molecular techniques and bioinformatic modeling allows pharmacogenomics to reveal new intervention angles. This includes the fight against resistance and its transmission, improved vaccines, disarmament of microbes and antibiotic options from novel molecular targets (lipids, RNA and carbohydrates). Such a system perspective is also essential for improved diagnostics and individualized medicine. However, an increase in public awareness and closer cooperation of industry and basic research are essential to turn research into powerful new drugs that will enable us to treat new arising infections in the future. Topics: Acetamides; Animals; Anti-Bacterial Agents; Bacterial Infections; Computational Biology; Daptomycin; Drug Delivery Systems; Drug Resistance, Microbial; Drug Resistance, Multiple, Bacterial; Forecasting; Gram-Positive Bacterial Infections; Gram-Positive Cocci; Humans; Linezolid; Minocycline; Oxazolidinones; Pharmacogenetics; Systems Biology; Tigecycline; Virginiamycin | 2010 |
Activities of therapeutic agents against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis.
Inhalation of water contaminated with Naegleria fowleri may lead to a potentially fatal infection of the central nervous system known as primary amebic meningoencephalitis (PAM). Amphotericin B (AMB), an antifungal drug, is the only agent with established clinical efficacy in the treatment of PAM, though therapy with this drug is not always effective and has been associated with adverse effects on the kidneys and other organs. We investigated the activity of various therapeutic agents against N. fowleri in an attempt to identify other useful agents for treating PAM. Several of these agents exhibited in vitro activity against the Lee (M67) strain of N. fowleri. The minimum inhibitory concentrations of these agents were 0.1 microg/ml (ketoconazole), 1 microg/ml (liposomal AMB), and 10 microg/ml (minocycline, quinupristin-dalfopristin, and trifluoperazine). Other agents had a minimum inhibitory concentration > 10 microg/ml (linezolid) or > 100 microg/ml (rifampin). In a mouse model of PAM, none of the untreated control mice survived, whereas the survival of treated animals was 50% (quinupristin-dalfopristin), 30% (ketoconazole and liposomal AMB), 20% (trifluoperazine), and 10% (linezolid and minocycline). Further studies are needed to ascertain whether these agents have synergistic activity with AMB in vitro and in vivo. Topics: Acetamides; Adolescent; Amebiasis; Amebicides; Amphotericin B; Animals; Central Nervous System Protozoal Infections; Disease Models, Animal; Drug Therapy, Combination; Female; Humans; Ketoconazole; Linezolid; Liposomes; Male; Mice; Minocycline; Naegleria fowleri; Oxazolidinones; Trifluoperazine; Virginiamycin | 2003 |