minocycline and pyrazolanthrone

minocycline has been researched along with pyrazolanthrone* in 2 studies

Other Studies

2 other study(ies) available for minocycline and pyrazolanthrone

ArticleYear
Astrocytic c-Jun N-terminal kinase-histone deacetylase-2 cascade contributes to glutamate transporter-1 decrease and mechanical allodynia following peripheral nerve injury in rats.
    Brain research bulletin, 2021, Volume: 175

    Decrease of glutamate transporter-1 (GLT-1) in the spinal dorsal horn after nerve injury induces enhanced excitatory transmission and causes persistent pain. Histone deacetylases (HDACs)-catalyzed deacetylation might contribute to the decrease of GLT-1, while the detailed mechanisms have yet to be fully elaborated. Spinal nerve ligation (SNL) induced significant increases of HDAC2 and decreases of GLT-1 in spinal astrocytes. Intrathecal infusion of the HDAC2 inhibitors attenuated the decrease of GLT-1 and enhanced phosphorylation of glutamate receptors. GLT-1 and phosphorylated c-Jun N-terminal kinase (JNK) were highly colocalized in the spinal cord, and a large number of pJNK positive cells were HDAC2 positive. Intrathecally infusion of the JNK inhibitor SP600125 significantly inhibited SNL-induced upregulation of HDAC2. SNL-induced HDAC2 up-regulation could be inhibited by the neutralizing anti-tumor necrosis factor-α (TNF-α) binding protein etanercept or the microglial inhibitor minocycline. In cultured astrocytes, TNF-α induced enhanced phosphorylation of JNK and a significant increase of HDAC2, as well as a remarkable decrease of GLT-1, which could be prevented by SP600125 or the HDAC2 specific inhibitor CAY10683. Our data suggest that astrocytic JNK-HDAC2 cascade contributes to GLT-1 decrease and mechanical allodynia following peripheral nerve injury. Neuroimmune activation after peripheral nerve injury could induce epigenetic modification changes in astrocytes and contribute to chronic pain maintenance.

    Topics: Animals; Anthracenes; Astrocytes; Carbamates; Cells, Cultured; Etanercept; Excitatory Amino Acid Transporter 2; Histone Deacetylase 2; Hyperalgesia; JNK Mitogen-Activated Protein Kinases; Male; Microglia; Minocycline; Neuralgia; Peripheral Nerve Injuries; Rats; Rats, Sprague-Dawley; Signal Transduction; Spinal Nerves; Tumor Necrosis Factor-alpha

2021
Neuroprotective action of flavopiridol, a cyclin-dependent kinase inhibitor, in colchicine-induced apoptosis.
    Neuropharmacology, 2003, Volume: 45, Issue:5

    Flavopiridol was developed as a drug for cancer therapy due to its ability to inhibit cell cycle progression by targeting cyclin-dependent kinases (CDKs). In this study, we show that flavopiridol may also have a neuroprotective action. We show that at therapeutic dosage (or at micromolar range), flavopiridol almost completely prevents colchicine-induced apoptosis in cerebellar granule neurones. In agreement with this, flavopiridol inhibits both the release of cyt c and the activation of caspase-3 induced in response to colchicine treatment. We demonstrate that in this cellular model for neurotoxicity, neither re-entry in the cell cycle nor activation of stress-activated protein kinases, such as c-Jun N-terminal kinase (JNK) or p38 MAP kinase, is involved. In contrast, we show that colchicine-induced apoptosis correlates with a substantial increase in the expression of cdk5 and Par-4, which is efficiently prevented by flavopiridol. Accordingly, a cdk5 inhibitor such as roscovitine, but not a cdk4 inhibitor such as 3-ATA, was also able to protect neurons from apoptosis as well as prevent accumulation of cdk5 and Par-4 in response to colchicine. Our data suggest a potential therapeutic use of flavopiridol in disorders of the central nervous system in which cytoskeleton alteration mediated by cdk5 activation and Par-4 expression has been demonstrated, such as Alzheimer's disease.

    Topics: Amino Acid Chloromethyl Ketones; Animals; Animals, Newborn; Anthracenes; Anti-Bacterial Agents; Apoptosis; Apoptosis Regulatory Proteins; Blotting, Western; Bromodeoxyuridine; Carrier Proteins; Caspase 3; Caspases; CDC2-CDC28 Kinases; Cell Count; Cell Survival; Cells, Cultured; Cerebellum; Chromatin; Colchicine; Cyclin E; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase 5; Cyclin-Dependent Kinases; Cytochromes c; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Flavonoids; Flow Cytometry; Immunohistochemistry; Intracellular Signaling Peptides and Proteins; JNK Mitogen-Activated Protein Kinases; Kainic Acid; MAP Kinase Kinase 4; Microtubules; Minocycline; Mitogen-Activated Protein Kinase Kinases; Neurons; Neuroprotective Agents; Piperidines; Purines; Rats; Rats, Sprague-Dawley; Roscovitine; Time Factors; Tubulin

2003