minocycline and oritavancin

minocycline has been researched along with oritavancin* in 5 studies

Reviews

4 review(s) available for minocycline and oritavancin

ArticleYear
Acute bacterial skin and skin structure infections in internal medicine wards: old and new drugs.
    Internal and emergency medicine, 2016, Volume: 11, Issue:5

    Skin and soft tissue infections (SSTIs) are a common cause of hospital admission among elderly patients, and traditionally have been divided into complicated and uncomplicated SSTIs. In 2010, the FDA provided a new classification of these infections, and a new category of disease, named acute bacterial skin and skin structure infections (ABSSSIs), has been proposed as an independent clinical entity. ABSSSIs include three entities: cellulitis and erysipelas, wound infections, and major cutaneous abscesses This paper revises the epidemiology of SSTIs and ABSSSIs with regard to etiologies, diagnostic techniques, and clinical presentation in the hospital settings. Particular attention is owed to frail patients with multiple comorbidities and underlying significant disease states, hospitalized on internal medicine wards or residing in nursing homes, who appear to be at increased risk of infection due to multi-drug resistant pathogens and treatment failures. Management of ABSSSIs and SSTIs, including evaluation of the hemodynamic state, surgical intervention and treatment with appropriate antibiotic therapy are extensively discussed.

    Topics: Aged; Aged, 80 and over; Anti-Bacterial Agents; Carbapenems; Ceftaroline; Cephalosporins; Daptomycin; Female; Fluoroquinolones; Glycopeptides; Hospitalization; Humans; Iatrogenic Disease; Internal Medicine; Linezolid; Lipoglycopeptides; Male; Minocycline; Oxazolidinones; Skin Diseases, Infectious; Soft Tissue Infections; Teicoplanin; Tigecycline; Vancomycin

2016
New antibiotics for the treatment of severe staphylococcal infection in the critically ill patient.
    Current opinion in critical care, 2005, Volume: 11, Issue:5

    Infection by Staphylococcus aureus in critically ill patients is usually associated with antimicrobial resistance and high mortality. A more effective antibiotic treatment is needed to replace older drugs that have limited efficacy. Novel substances active on methicillin-resistant Staphylococcus aureus, which are already available on the market or are still in development, are discussed in this review, with emphasis on nosocomial infections.. A number of new antibiotics are on the market (linezolid, quinupristin-dalfopristin, daptomycin) and there is good evidence regarding their efficacy, especially in methicillin-resistant Staphylococcus aureus infections. Linezolid is, to date, the best alternative in treating nosocomial pneumonia by methicillin-resistant Staphylococcus aureus. It is cost-effective; resistance levels are still very low but there are some concerns regarding its adverse events. Quinupristin-dalfopristin shows good activity in vitro but its efficacy in patients with pneumonia by methicillin-resistant Staphylococcus aureus is modest. Daptomycin is not recommended for pulmonary infections because of its reduced penetration in the lung tissue. Under current phase III trials in patients with nosocomial infections are tigecycline, ceftobiprole, and three new glycopeptides, all with particular activity against methicillin-resistant Staphylococcus aureus.. For the moment, there are limited and rather expensive therapeutic options for the infections by Staphylococcus aureus in the critically ill. No dramatic superiority of the new drugs in comparison to the standard therapies was observed in most of the clinical trials. Better results on the efficacy of the drugs under investigation are expected.

    Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; Cephalosporins; Clinical Trials as Topic; Critical Illness; Daptomycin; Drug Resistance, Multiple, Bacterial; Glycopeptides; Humans; Linezolid; Lipoglycopeptides; Methicillin Resistance; Minocycline; Oxazolidinones; Staphylococcal Infections; Teicoplanin; Tigecycline; Virginiamycin

2005
Oritavancin and tigecycline: investigational antimicrobials for multidrug-resistant bacteria.
    Pharmacotherapy, 2004, Volume: 24, Issue:1

    The advent of multidrug-resistant gram-positive aerobes such as Staphylococcus aureus, Streptococcus pneumoniae, and the enterococci, which are resistant to beta-lactams, vancomycin, and a host of other commonly used antimicrobials, has complicated our approach to antibiotic therapy. Despite marketing of the first oxazolidinone, linezolid, and the streptogramin combination, quinupristin-dalfopristin, an urgent need exists for more agents to combat these pathogens. Two such agents, the glycopeptide oritavancin (LY333328) and the glycylcycline tigecycline (GAR-936), are in phase III clinical trials. These agents, which require parenteral administration, exhibit substantial in vitro activity against a variety of gram-positive aerobes and anaerobes, including the multidrug-resistant organisms listed previously. Only tigecycline demonstrates useful activity against gram-negative organisms. Combination therapy of these agents with ampicillin or aminoglycosides frequently leads to synergistic in vitro activity against multidrug-resistant staphylococci and streptococci. These agents are also active in a variety of animal models of systemic and localized infections. Few published efficacy and tolerability data are available in humans. If controlled clinical trial data verify these agents' efficacy and tolerability, both drugs should become welcome additions to the available antimicrobials. However, restricting their use to the treatment of infections caused by bacteria resistant to other antimicrobials, especially multidrug-resistant staphylococci and streptococci, may prolong their clinical utility by retarding the development of resistance. Careful surveillance of bacterial sensitivity to these agents should be undertaken to assist clinicians in the decision whether or not to use these agents empirically to treat infections caused by suspected multidrug-resistant gram-positive pathogens.

    Topics: Animals; Anti-Bacterial Agents; Drug Resistance, Multiple, Bacterial; Drugs, Investigational; Glycopeptides; Gram-Positive Bacterial Infections; Humans; Injections, Intravenous; Lipoglycopeptides; Minocycline; Tigecycline

2004
Recent advances in the treatment of infections due to resistant Staphylococcus aureus.
    Current opinion in infectious diseases, 2004, Volume: 17, Issue:6

    This paper reviews recent data on the treatment of infections caused by drug-resistant Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA). This review will focus on new findings reported in the English-language medical literature from June 2003 to September 2004.. Despite the emergence of resistant and multidrug-resistant S. aureus, we have three effective drugs in clinical use for which little resistance has been observed: quinupristin-dalfopristin, linezolid, and daptomycin. Linezolid looks particularly promising in the treatment of MRSA pneumonia. Daptomycin displays rapid bactericidal activity in vitro, but, so far, clinical trials have only been conducted for the treatment of skin and soft-tissue infections. There are three drugs with broad-spectrum activity against Gram-positive organisms at an advanced stage of testing: two new glycopeptides with potent bacteriocidal activity and long half-lives (oritavancin and dalbavancin), and tigecycline, a minocycline derivative. These drugs have also shown efficacy in the treatment of skin and soft-tissue infections.. The promising data that have emerged in the last year indicate that we may have six available drugs to treat resistant S. aureus infections within the next few years. The next goal is to determine the appropriate indications and cost-effectiveness of each of these drugs in our treatment strategy against S. aureus and other Gram-positive pathogens.

    Topics: Acetamides; Anti-Bacterial Agents; Daptomycin; Drug Resistance, Multiple, Bacterial; Glycopeptides; Humans; Linezolid; Lipoglycopeptides; Minocycline; Oxazolidinones; Staphylococcal Infections; Teicoplanin; Tigecycline; Virginiamycin

2004

Other Studies

1 other study(ies) available for minocycline and oritavancin

ArticleYear
Update on prevalence and treatment of methicillin-resistant Staphylococcus aureus infections.
    Expert review of anti-infective therapy, 2007, Volume: 5, Issue:6

    The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) is characterized by variations (sometimes extreme) by country and geographic region. The conventional association of MRSA with healthcare settings has been upset by the emergence of community-associated MRSA infections in many areas. With this surge in MRSA comes a renewed interest in alternative agents to vancomycin for treatment of MRSA infections, including older drugs, such as clindamycin, doxycycline and trimethoprim- sulfamethoxazole. Newer agents, such as linezolid and daptomycin, are aiming to improve on the poor cure rates found with vancomycin in serious MRSA infections, but definitive studies showing superiority of these drugs are not yet available. Finally, the drug-development pipeline contains a number of agents for the treatment of MRSA infections, including enhanced glycopeptides (dalbavancin, oritavancin and telavancin) and anti-MRSA cephalosporins (ceftobiprole). As MRSA becomes the 'new normal' in many areas, clinicians will have to sort out the proper role of a dozen or more anti-MRSA drugs.

    Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; Cephalosporins; Clindamycin; Daptomycin; Doxycycline; Folic Acid Antagonists; Global Health; Glycopeptides; Humans; Linezolid; Lipoglycopeptides; Methicillin; Methicillin Resistance; Minocycline; Oxazolidinones; Prevalence; Staphylococcal Infections; Staphylococcus aureus; Sulfamethoxazole; Teicoplanin; Tigecycline; Trimethoprim; Vancomycin

2007