minocycline and ferric-ammonium-citrate

minocycline has been researched along with ferric-ammonium-citrate* in 2 studies

Other Studies

2 other study(ies) available for minocycline and ferric-ammonium-citrate

ArticleYear
HFE polymorphisms affect cellular glutamate regulation.
    Neurobiology of aging, 2011, Volume: 32, Issue:6

    HFE gene variants are relatively common genetic variants in Caucasians. The H63D HFE genetic variant has been repeatedly associated with a number of neurodegenerative diseases. We developed neuroblastoma cell lines expressing different HFE polymorphisms to explore the mechanisms behind these associations. Here we tested the hypothesis that cells with the H63D variant have a phenotype that promotes glutamate toxicity. In support of this hypothesis, expression of H63D HFE is associated with increased calcium-induced glutamate secretion and decreased cellular glutamate uptake. The polymorphism-associated changes in glutamate secretion were mimicked by altering cellular iron. Additionally, intracellular calcium is altered in a genotype-specific manner which could further impact glutamate secretion. HFE-dependent effects on glutamate uptake were confirmed in astrocytoma cell lines with endogenous expression of HFE. The ability of minocycline and the antioxidant Trolox to increase glutamate uptake differed by HFE genotype and implicate oxidative stress in glutamate regulation. This study demonstrates HFE cellular effects that extend beyond iron regulation, and suggests that H63D HFE may promote glutamate toxicity.

    Topics: Analysis of Variance; Calcium; Cell Line, Tumor; Deferoxamine; Enzyme Inhibitors; Ferric Compounds; Gene Expression Regulation, Neoplastic; Glutamate Plasma Membrane Transport Proteins; Glutamic Acid; Glutaminase; Hemochromatosis Protein; Histocompatibility Antigens Class I; Humans; Intracellular Fluid; Iron; Membrane Proteins; Minocycline; Neuroblastoma; Polymorphism, Genetic; Quaternary Ammonium Compounds; Siderophores; Sodium; Tacrine; Transfection; Tritium; Vesicular Glutamate Transport Protein 1

2011
Influence of HFE variants and cellular iron on monocyte chemoattractant protein-1.
    Journal of neuroinflammation, 2009, Feb-19, Volume: 6

    Polymorphisms in the MHC class 1-like gene known as HFE have been proposed as genetic modifiers of neurodegenerative diseases that include neuroinflammation as part of the disease process. Variants of HFE are relatively common in the general population and are most commonly associated with iron overload, but can promote subclinical cellular iron loading even in the absence of clinically identified disease. The effects of the variants as well as the resulting cellular iron dyshomeostasis potentially impact a number of disease-associated pathways. We tested the hypothesis that the two most common HFE variants, H63D and C282Y, would affect cellular secretion of cytokines and trophic factors.. We screened a panel of cytokines and trophic factors using a multiplexed immunoassay in human neuroblastoma SH-SY5Y cells expressing different variants of HFE. The influence of cellular iron secretion on the potent chemokine monocyte chemoattractant protein-1 (MCP-1) was assessed using ferric ammonium citrate and the iron chelator, desferroxamine. Additionally, an antioxidant, Trolox, and an anti-inflammatory, minocycline, were tested for their effects on MCP-1 secretion in the presence of HFE variants.. Expression of the HFE variants altered the labile iron pool in SH-SY5Y cells. Of the panel of cytokines and trophic factors analyzed, only the release of MCP-1 was affected by the HFE variants. We further examined the relationship between iron and MCP-1 and found MCP-1 secretion tightly associated with intracellular iron status. A potential direct effect of HFE is considered because, despite having similar levels of intracellular iron, the association between HFE genotype and MCP-1 expression was different for the H63D and C282Y HFE variants. Moreover, HFE genotype was a factor in the effect of minocycline, a multifaceted antibiotic used in treating a number of neurologic conditions associated with inflammation, on MCP-1 secretion.. Our results demonstrate that HFE polymorphisms influence the synthesis and release of MCP-1. The mechanism of action involves cellular iron status but it appears there could be additional influences such as ER stress. Finally, these data demonstrate a pharmacogenetic effect of HFE polymorphisms on the ability of minocycline to inhibit MCP-1 secretion.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Cell Line, Tumor; Chemokine CCL2; Chromans; Deferoxamine; Ferric Compounds; Gene Expression; Heat-Shock Proteins; Hemochromatosis Protein; Histocompatibility Antigens Class I; Humans; Iron; Iron Chelating Agents; Membrane Proteins; Mice; Microglia; Minocycline; Neurons; NF-kappa B; Polymorphism, Single Nucleotide; Quaternary Ammonium Compounds; RNA, Messenger

2009