minocycline has been researched along with 1-1-diphenyl-2-picrylhydrazyl* in 3 studies
3 other study(ies) available for minocycline and 1-1-diphenyl-2-picrylhydrazyl
Article | Year |
---|---|
Antioxidant and anti-inflammatory neolignans from the seeds of hawthorn.
Seven new neolignans (1-2, 7-11) and five known compounds (3-6, 12) were isolated from the 70% EtOH extract of hawthorn seeds. Their structures were determined by spectroscopic analyses. The antioxidant and anti-inflammatory activities of all the isolates were investigated. Most of the isolates showed moderate radical scavenging activity in the DPPH assay and significant activities in the ABTS and FRAP assays. Furthermore, compounds 7-12 exhibited marked nitric oxide (NO) inhibition and compounds 1-4 had a potent necrosis factor-α (TNF-α) inhibitory effect. The results we obtained showed that hawthorn seeds can be regarded as a potential new and cheap source of antioxidants and inflammation inhibitors. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Benzothiazoles; Biphenyl Compounds; Crataegus; Lignans; Mice; Nitric Oxide; Picrates; Plant Extracts; RAW 264.7 Cells; Seeds; Sulfonic Acids; Tumor Necrosis Factor-alpha | 2016 |
Anti-inflammatory properties of doxycycline and minocycline in experimental models: an in vivo and in vitro comparative study.
Minocycline (Mino) and doxycycline (Dox) are second generation tetracyclines known to present several other effects, which are independent from their antimicrobial activities. We studied in a comparative way the anti-inflammatory effects of Mino and Dox, on acute models of peripheral inflammation in rodents (formalin test and peritonitis in mice, and carrageenan-induced paw oedema in rats). Immunohistochemical assays for TNF-alpha and iNOS in rat paws of carrageenan-induced oedema were also carried out as well as in vitro assays for myeloperoxidase (MPO) and lactate dehydrogenase (LDH). Furthermore, antioxidant activities were evaluated by the DPPH assay.. In the formalin test although Mino and Dox (1, 5, 10 and 25 mg/kg, i.p.) inhibited the first phase, they acted predominantly on the second phase of the test, where inhibition of the licking time close to 80% were observed. Mino and Dox were very efficacious in reducing the carrageenan-induced paw oedema in rats (10, 25 and 50 mg/kg, i.p.) and carrageenan-induced leucocyte migration (1 and 5 mg/kg, i.p.) to mice peritoneal cavities. Besides, they also significantly inhibited MPO and LDH releases at doses ranging from 0.001 to 1 μg/ml. Thus, in general, the anti-inflammatory activity of Dox was higher as compared to that of Mino, although the radical scavenging activity of Mino was of a magnitude 10 times higher.. Our data indicate that anti-inflammatory and antioxidant effects, involve the inhibition of iNOS and TNF-alpha, among other properties, and these encourage clinical studies of these compounds for new therapeutic applications, especially those were inflammation plays a role. Topics: alpha-Tocopherol; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Biphenyl Compounds; Carrageenan; Cell Movement; Doxycycline; Edema; Formaldehyde; Inflammation; L-Lactate Dehydrogenase; Male; Mice; Mice, Inbred Strains; Minocycline; Neutrophils; Nitric Oxide Synthase Type II; Oxidation-Reduction; Pain; Pain Measurement; Peritonitis; Peroxidase; Picrates; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha | 2011 |
Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage.
The neuroprotective effects of minocycline-which is broadly protective in neurologic-disease models featuring cell death and is being evaluated in clinical trials-were investigated both in vitro and in vivo. For the in vivo study, focal cerebral ischemia was induced by permanent middle cerebral artery occlusion in mice. Minocycline at 90 mg/kg intraperitoneally administered 60 min before or 30 min after (but not 4 h after) the occlusion reduced infarction, brain swelling, and neurologic deficits at 24 h after the occlusion. For the in vitro studies, we used cortical-neuron cultures from rat fetuses in which neurotoxicity was induced by 24-h exposure to 500 microM glutamate. Furthermore, the effects of minocycline on oxidative stress [such as lipid peroxidation in mouse forebrain homogenates and free radical-scavenging activity against diphenyl-p-picrylhydrazyl (DPPH)] were evaluated to clarify the underlying mechanism. Minocycline significantly inhibited glutamate-induced cell death at 2 microM and lipid peroxidation and free radical scavenging at 0.2 and 2 microM, respectively. These findings indicate that minocycline has neuroprotective effects in vivo against permanent focal cerebral ischemia and in vitro against glutamate-induced cell death and that an inhibition of oxidative stress by minocycline may be partly responsible for these effects. Topics: Animals; Antioxidants; Benzimidazoles; Benzoxazoles; Biphenyl Compounds; Brain Edema; Brain Infarction; Cell Death; Cell Survival; Cells, Cultured; Cerebral Cortex; Chromans; Dose-Response Relationship, Drug; Drug Interactions; Embryo, Mammalian; Fluorescent Dyes; Glutamic Acid; Hydrazines; Infarction, Middle Cerebral Artery; Inhibitory Concentration 50; Ischemia; Lipid Peroxidation; Male; Mice; Minocycline; Neurons; Neuroprotective Agents; Oxidative Stress; Picrates; Quinolinium Compounds; Saponins; Tetrazolium Salts; Time Factors | 2005 |