miltefosine has been researched along with nifurtimox in 29 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (17.24) | 29.6817 |
2010's | 21 (72.41) | 24.3611 |
2020's | 3 (10.34) | 2.80 |
Authors | Studies |
---|---|
Figadère, B; Fournet, A; Franck, X; Hocquemiller, R; Mahieux, R; Prina, E | 1 |
Aguirre, G; Bertinaria, M; Boiani, L; Cazzulo, JJ; Cerecetto, H; Chidichimo, A; González, M; Guglielmo, S | 1 |
Boiani, L; Boiani, M; Cazzulo, JJ; Cerecetto, H; Chidichimo, A; González, M; Hernández, P; Merlino, A | 1 |
Benitez, D; Boiani, L; Castro, D; Cerecetto, H; Gil, C; González, M; Hernández, P; Merlino, A; Olea-Azar, C; Porcal, W | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Della Togna, G; Gerwick, WH; Kyle, DE; Linington, RG; Lopez, D; Sanchez, LM; Vesely, BA | 1 |
Aldana, I; Benitez, D; Boiani, L; Cabrera, M; Cerecetto, H; Di Maio, R; Ferreira, ME; González, M; Hernández, P; Lavaggi, ML; López de Ceráin, A; Monge, A; Moreno, E; Pérez-Silanes, S; Serna, E; Solano, B; Torres, E; Torres, S; Vera de Bilbao, N; Yaluff, G | 1 |
Bloomer, WD; Brun, R; Kaiser, M; McKenzie, C; Papadopoulou, MV; Prasittichai, C; Torreele, E; Trunz, BB; Wilkinson, SR | 1 |
Bloomer, WD; Chatelain, E; Ioset, JR; Kaiser, M; McKenzie, C; Papadopoulou, MV; Rosenzweig, HS; Wilkinson, SR | 1 |
Bloomer, WD; Chatelain, E; Ioset, JR; Kaiser, M; Papadopoulou, MV; Rosenzweig, HS | 1 |
Ariën, KK; Augustyns, K; Cos, P; Dirié, B; Heeres, J; Joossens, J; Lewi, PJ; Lyssens, S; Maes, L; Michiels, J; Van der Veken, P; Vanham, G; Venkatraj, M | 1 |
Bloomer, WD; Kaiser, M; Papadopoulou, MV; Rosenzweig, HS; Wilkinson, SR | 1 |
Bloomer, WD; Chatelain, E; Ioset, JR; Kaiser, M; O'Shea, IP; Papadopoulou, MV; Rosenzweig, HS; Wilkinson, SR | 1 |
Bloomer, WD; Kaiser, M; O'Shea, IP; Papadopoulou, MV; Rosenzweig, HS; Wilkinson, SR | 1 |
Bosc, D; Cojean, S; Dubois, J; Franco, CH; Freitas-Junior, LH; Grellier, P; Loiseau, PM; Moraes, CB; Mouray, E | 1 |
Bloomer, WD; Kaiser, M; Papadopoulou, MV; Rosenzweig, HS; Szular, J; Wilkinson, SR | 2 |
Alunda, JM; Baptista, C; Behrens, B; Bifeld, E; Borsari, C; Clos, J; Cordeiro-da-Silva, A; Corral, MJ; Costantino, L; Costi, MP; Dello Iacono, L; Di Pisa, F; Eick, J; Ellinger, B; Ferrari, S; Gribbon, P; Gul, S; Henrich, S; Jiménez-Antón, MD; Keminer, O; Kohler, M; Kuzikov, M; Landi, G; Luciani, R; Mangani, S; Pellati, F; Poehner, I; Pozzi, C; Reinshagen, J; Santarem, N; Tait, A; Tejera Nevado, P; Torrado, J; Trande, M; Wade, RC; Witt, G; Wolf, M | 1 |
Alcântara, LM; Alunda, JM; Baptista, C; Bertolacini, CD; Borsari, C; Bruno Dos Santos, P; Clos, J; Cordeiro-da-Silva, A; Corral, MJ; Costantino, L; Costi, MP; Ellinger, B; Ferrari, S; Fontana, V; Franco, CH; Freitas-Junior, LH; Gribbon, P; Gul, S; Kuzikov, M; Linciano, P; Moraes, CB; Olías, AI; Reinshagen, J; Santarem, N; Tait, A; Tejera Nevado, P; Torrado, J; Witt, G; Wolf, M | 1 |
Argüello-Garcia, R; Barbosa-Cabrera, E; Chan-Bacab, MJ; Colín-Lozano, B; Hernández-Núñez, E; León-Rivera, I; López-Guerrero, V; Moo-Puc, R; Navarrete-Vázquez, G; Ortega-Morales, BO; Scior, T | 1 |
Augustyns, K; Caljon, G; Heeres, J; Joossens, J; Lewi, PJ; Maes, L; Salado, IG; Van der Veken, P; Venkatraj, M | 1 |
Augustyns, K; Baán, A; Caljon, G; Kiekens, F; Maes, L; Matheeussen, A; Salado, IG; Van der Veken, P; Verdeyen, T | 1 |
Azas, N; Boudot, C; Bourgeade-Delmas, S; Castera-Ducros, C; Cohen, A; Courtioux, B; Crozet, MD; Fairlamb, A; Fersing, C; Hutter, S; Moreau, A; Pedron, J; Pratviel, G; Primas, N; Rathelot, P; Sournia-Saquet, A; Stigliani, JL; Valentin, A; Vanelle, P; Verhaeghe, P; Wyllie, S | 1 |
Cantizani, J; Cogo, J; Corrêa, AG; Cotillo, I; Filho, BPD; Martín, JJ; Nakamura, CV; Sangi, DP; Ueda-Nakamura, T | 1 |
Azas, N; Basmaciyan, L; Belle Mbou, V; Boudot, C; Bourgeade-Delmas, S; Boutet-Robinet, É; Casanova, M; Castera-Ducros, C; Cohen, A; Courtioux, B; Fairlamb, AH; Fersing, C; Hutter, S; Laget, M; Milne, R; Pedron, J; Piednoel, M; Primas, N; Rathelot, P; Since, M; Sournia-Saquet, A; Valentin, A; Vanelle, P; Verhaeghe, P; Wyllie, S | 1 |
Azas, N; Boudot, C; Bourgeade-Delmas, S; Boutet-Robinet, É; Brossas, JY; Castera-Ducros, C; Corvaisier, S; Courtioux, B; Destere, A; Fairlamb, AH; Fersing, C; Hutter, S; Malzert-Fréon, A; Mazier, D; Paoli-Lombardo, R; Paris, L; Pedron, J; Pinault, E; Primas, N; Rathelot, P; Seguy, L; Since, M; Sournia-Saquet, A; Stigliani, JL; Valentin, A; Vanelle, P; Verhaeghe, P; Wyllie, S | 1 |
Basmadjián, Y; Faral-Tello, P; Greif, G; Robello, C; Satragno, D | 1 |
Alves, MA; Andrade-Neto, VV; Costa, DS; Costa, PRR; Cunha-Júnior, EF; Dias, AG; Fairlamb, AH; Goulart, MOF; Pacheco, JDS; Santos, DC; Silva, TL; Torres-Santos, EC; Wyllie, S | 1 |
Croft, SL; Escobar, P; Hernández, IP; Luna, KP; Rueda, CM; Zorro, MM | 1 |
29 other study(ies) available for miltefosine and nifurtimox
Article | Year |
---|---|
Biological evaluation of substituted quinolines.
Topics: Animals; Antiparasitic Agents; Cell Line; Cell Transformation, Viral; Evaluation Studies as Topic; HTLV-I Infections; Leishmania; Parasitic Sensitivity Tests; Plasmodium falciparum; Quinolines; Trypanosoma | 2004 |
Furoxan-, alkylnitrate-derivatives and related compounds as anti-trypanosomatid agents: mechanism of action studies.
Topics: Animals; Dose-Response Relationship, Drug; Leishmania; Molecular Structure; Nitrites; Oxadiazoles; Parasitic Sensitivity Tests; Stereoisomerism; Structure-Activity Relationship; Sulfhydryl Compounds; Trypanocidal Agents; Trypanosoma cruzi | 2008 |
Second generation of 2H-benzimidazole 1,3-dioxide derivatives as anti-trypanosomatid agents: synthesis, biological evaluation, and mode of action studies.
Topics: Animals; Benzimidazoles; Cell Line; Cell Survival; Chagas Disease; Glucose; Leishmania braziliensis; Leishmaniasis; Macrophages; Mice; Mitochondria; Oxidoreductases; Trypanocidal Agents; Trypanosoma cruzi | 2009 |
Anti-trypanosomatid benzofuroxans and deoxygenated analogues: synthesis using polymer-supported triphenylphosphine, biological evaluation and mechanism of action studies.
Topics: Animals; Benzoxazoles; Inhibitory Concentration 50; Macrophages; Mice; Molecular Structure; Organophosphorus Compounds; Oxidative Stress; Trypanocidal Agents; Trypanosoma cruzi | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Almiramides A-C: discovery and development of a new class of leishmaniasis lead compounds.
Topics: Antiprotozoal Agents; Cyanobacteria; Leishmania donovani; Lipopeptides; Molecular Conformation; Stereoisomerism; Structure-Activity Relationship | 2010 |
3-Trifluoromethylquinoxaline N,N'-dioxides as anti-trypanosomatid agents. Identification of optimal anti-T. cruzi agents and mechanism of action studies.
Topics: Animals; Chemistry, Pharmaceutical; Cyclic N-Oxides; Drug Design; Electrons; Humans; Inhibitory Concentration 50; Mice; Models, Chemical; Mutagenicity Tests; Parasitemia; Quinoxalines; Toxicity Tests; Trypanocidal Agents; Trypanosoma cruzi | 2011 |
Novel 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines as anti-chagasic agents.
Topics: Amines; Animals; Cells, Cultured; Chagas Disease; Leishmania donovani; Mice; Nitro Compounds; Parasitic Sensitivity Tests; Rats; Structure-Activity Relationship; Triazoles; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma brucei rhodesiense; Trypanosoma cruzi | 2011 |
Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents.
Topics: Amides; Animals; Cell Line; Leishmania donovani; Nitro Compounds; Nitroreductases; Parasitic Sensitivity Tests; Prodrugs; Rats; Structure-Activity Relationship; Sulfonamides; Triazoles; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma cruzi | 2012 |
Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents.
Topics: Animals; Benzothiazoles; Cell Line; Cell Survival; Leishmania donovani; Piperazines; Rats; Structure-Activity Relationship; Triazoles; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma cruzi | 2013 |
From human immunodeficiency virus non-nucleoside reverse transcriptase inhibitors to potent and selective antitrypanosomal compounds.
Topics: Anti-HIV Agents; Cell Line; Cell Survival; Dose-Response Relationship, Drug; HIV Reverse Transcriptase; HIV-1; Humans; Microbial Sensitivity Tests; Molecular Structure; Parasitic Sensitivity Tests; Reverse Transcriptase Inhibitors; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma brucei rhodesiense | 2014 |
Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents.
Topics: Amides; Apoptosis; Blood Platelets; Cells, Cultured; Chagas Disease; Flow Cytometry; Heterocyclic Compounds; Humans; Imidazoles; In Vitro Techniques; Leishmania donovani; Leishmaniasis, Visceral; Molecular Structure; Monocytes; Platelet Activation; Sulfonamides; Triazoles; Trypanocidal Agents; Trypanosoma cruzi | 2014 |
Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation.
Topics: Animals; Binding Sites; Cell Line; Chagas Disease; Disease Models, Animal; Leishmania donovani; Mice; Mice, Inbred BALB C; Nitroreductases; Parasitic Sensitivity Tests; Prodrugs; Protein Structure, Tertiary; Protozoan Proteins; Rats; Sterol 14-Demethylase; Structure-Activity Relationship; Triazoles; Trypanocidal Agents; Trypanosoma brucei rhodesiense; Trypanosoma cruzi | 2015 |
3-Nitrotriazole-based piperazides as potent antitrypanosomal agents.
Topics: Animals; Cell Line; Chagas Disease; Dose-Response Relationship, Drug; Humans; Leishmania donovani; Mice; Mice, Inbred BALB C; Molecular Structure; Parasitic Sensitivity Tests; Piperazines; Rats; Structure-Activity Relationship; Triazoles; Trypanocidal Agents; Trypanosoma brucei rhodesiense; Trypanosoma cruzi | 2015 |
Highly improved antiparasitic activity after introduction of an N-benzylimidazole moiety on protein farnesyltransferase inhibitors.
Topics: Alkyl and Aryl Transferases; Animals; Antiparasitic Agents; Cell Line; Enzyme Inhibitors; Humans; Imidazoles; Leishmania donovani; Leishmaniasis, Visceral; Malaria, Falciparum; Mice; Parasitic Sensitivity Tests; Plasmodium falciparum; Trypanosoma; Trypanosoma brucei brucei; Trypanosoma cruzi; Trypanosomiasis | 2016 |
Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds.
Topics: Amides; Antiprotozoal Agents; Cell Line; Chagas Disease; Humans; Leishmania; Parasitic Sensitivity Tests; Structure-Activity Relationship; Thiazoles; Trypanocidal Agents; Trypanosoma | 2016 |
Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs.
Topics: Animals; Biological Products; Cell Line; Dose-Response Relationship, Drug; Flavonols; Humans; Macrophages; Mice; Mice, Inbred BALB C; Models, Molecular; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei | 2016 |
Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity.
Topics: Acetamides; Animals; Mice; Nitroreductases; Structure-Activity Relationship; Triazoles; Trypanocidal Agents; Trypanosoma cruzi; Trypanosomiasis, African | 2016 |
Methoxylated 2'-hydroxychalcones as antiparasitic hit compounds.
Topics: Animals; Antiparasitic Agents; Cell Line, Tumor; Chalcones; Cyclodextrins; Drug Carriers; Mice; Solubility; Trypanosomatina | 2017 |
Synthesis, in vitro and in vivo giardicidal activity of nitrothiazole-NSAID chimeras displaying broad antiprotozoal spectrum.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antiprotozoal Agents; Drug Design; Female; Giardia lamblia; Giardiasis; Humans; Leishmania; Mice; Nitro Compounds; Protozoan Infections; Thiazoles; Trichomonas vaginalis; Trypanosoma cruzi | 2017 |
Novel triazine dimers with potent antitrypanosomal activity.
Topics: Animals; Antiprotozoal Agents; Cell Proliferation; Cell Survival; Dimerization; Dose-Response Relationship, Drug; Drug Discovery; Fibroblasts; Humans; Leishmania infantum; Male; Mice; Molecular Structure; Reverse Transcriptase Inhibitors; Structure-Activity Relationship; Triazines; Trypanosoma brucei brucei; Trypanosoma brucei rhodesiense; Trypanosoma cruzi | 2018 |
Optimization of the pharmacokinetic properties of potent anti-trypanosomal triazine derivatives.
Topics: Animals; Disease Models, Animal; Humans; Mice; Structure-Activity Relationship; Triazines; Tropolone; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosomiasis, African | 2018 |
8-Aryl-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridines as potent antitrypanosomatid molecules bioactivated by type 1 nitroreductases.
Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Cell Survival; Crystallography, X-Ray; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Hep G2 Cells; Humans; Leishmania donovani; Models, Molecular; Molecular Structure; Nitroreductases; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei | 2018 |
Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents.
Topics: Antiprotozoal Agents; Dose-Response Relationship, Drug; Leishmania donovani; Molecular Structure; Parasitic Sensitivity Tests; Quinoxalines; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma cruzi | 2018 |
Nongenotoxic 3-Nitroimidazo[1,2-
Topics: | 2019 |
8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi.
Topics: Dose-Response Relationship, Drug; Molecular Structure; Nitroimidazoles; Parasitic Sensitivity Tests; Pyridines; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma cruzi | 2020 |
Topics: | 2020 |
Monocyclic Nitro-heteroaryl Nitrones with Dual Mechanism of Activation: Synthesis and Antileishmanial Activity.
Topics: | 2021 |
In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole.
Topics: Antiprotozoal Agents; Colombia; Nifurtimox; Nitroimidazoles; Parasitic Sensitivity Tests; Phosphorylcholine; Trypanosoma cruzi | 2009 |