midostaurin has been researched along with cholest-5-ene-3-4-diol* in 2 studies
1 trial(s) available for midostaurin and cholest-5-ene-3-4-diol
Article | Year |
---|---|
Comparison of two endogenous biomarkers of CYP3A4 activity in a drug-drug interaction study between midostaurin and rifampicin.
Midostaurin, a multitargeted tyrosine kinase inhibitor, is primarily metabolized by CYP3A4. This midostaurin drug-drug interaction study assessed the dynamic response and clinical usefulness of urinary 6β-hydroxycortisol to cortisol ratio (6βCR) and plasma 4β-hydroxycholesterol (4βHC) for monitoring CYP3A4 activity in the presence or absence of rifampicin, a strong CYP3A4 inducer.. Forty healthy adults were randomized into groups for either placebo or treatment with rifampicin 600 mg QD for 14 days. All participants received midostaurin 50 mg on day 9. Midostaurin plasma pharmacokinetic parameters were assessed. Urinary 6βCR and plasma 4βHC levels were measured on days 1, 9, 11, and 15.. Both markers remained stable over time in the control group and increased significantly in the rifampicin group. In the rifampicin group, the median increases (vs day 1) on days 9, 11, and 15 were 4.1-, 5.2-, and 4.7-fold, respectively, for 6βCR and 3.4-, 4.1-, and 4.7-fold, respectively, for 4βHC. Inter- and intrasubject variabilities in the control group were 45.6 % and 30.5 %, respectively, for 6βCR, and 33.8 % and 7.5 %, respectively, for 4βHC. Baseline midostaurin area under the concentration-time curve (AUC) correlated with 4βHC levels (ρ = -0.72; P = .003), but not with 6βCR (ρ = 0.0925; P = .6981).. Both 6βCR and 4βHC levels showed a good dynamic response range upon strong CYP3A4 induction with rifampicin. Because of lower inter- and intrasubject variability, 4βHC appeared more reliable and better predictive of CYP3A4 activity compared with 6βCR. The data from our study further support the clinical utility of these biomarkers. Topics: Adult; Biomarkers; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP3A Inducers; Drug Interactions; Female; Humans; Hydrocortisone; Hydroxycholesterols; Male; Middle Aged; Protein Kinase Inhibitors; Rifampin; Staurosporine; Young Adult | 2014 |
1 other study(ies) available for midostaurin and cholest-5-ene-3-4-diol
Article | Year |
---|---|
Simultaneous Physiologically Based Pharmacokinetic (PBPK) Modeling of Parent and Active Metabolites to Investigate Complex CYP3A4 Drug-Drug Interaction Potential: A Case Example of Midostaurin.
Midostaurin (PKC412) is being investigated for the treatment of acute myeloid leukemia (AML) and advanced systemic mastocytosis (advSM). It is extensively metabolized by CYP3A4 to form two major active metabolites, CGP52421 and CGP62221. In vitro and clinical drug-drug interaction (DDI) studies indicated that midostaurin and its metabolites are substrates, reversible and time-dependent inhibitors, and inducers of CYP3A4. A simultaneous pharmacokinetic model of parent and active metabolites was initially developed by incorporating data from in vitro, preclinical, and clinical pharmacokinetic studies in healthy volunteers and in patients with AML or advSM. The model reasonably predicted changes in midostaurin exposure after single-dose administration with ketoconazole (a 5.8-fold predicted versus 6.1-fold observed increase) and rifampicin (90% predicted versus 94% observed reduction) as well as changes in midazolam exposure (1.0 predicted versus 1.2 observed ratio) after daily dosing of midostaurin for 4 days. The qualified model was then applied to predict the DDI effect with other CYP3A4 inhibitors or inducers and the DDI potential with midazolam under steady-state conditions. The simulated midazolam area under the curve ratio of 0.54 and an accompanying observed 1.9-fold increase in the CYP3A4 activity of biomarker 4 Topics: Adult; Biomarkers; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP3A Inducers; Cytochrome P-450 CYP3A Inhibitors; Drug Interactions; Female; Humans; Hydroxycholesterols; Ketoconazole; Male; Midazolam; Middle Aged; Models, Biological; Rifampin; Staurosporine; Young Adult | 2018 |