midazolam has been researched along with varenicline in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 5 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Cunningham, CS; Javors, MA; McMahon, LR | 1 |
Cunningham, CS; McMahon, LR | 1 |
de Moura, FB; McMahon, LR | 1 |
1 review(s) available for midazolam and varenicline
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
4 other study(ies) available for midazolam and varenicline
Article | Year |
---|---|
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Pharmacologic characterization of a nicotine-discriminative stimulus in rhesus monkeys.
Topics: Alkaloids; Animals; Azocines; Benzazepines; Cocaine; Conditioning, Operant; Discrimination Learning; Dopamine Uptake Inhibitors; Drug Interactions; Female; Hypnotics and Sedatives; Macaca mulatta; Male; Mecamylamine; Midazolam; Nicotine; Nicotinic Agonists; Quinolizines; Quinoxalines; Receptors, Nicotinic; Varenicline | 2012 |
Multiple nicotine training doses in mice as a basis for differentiating the effects of smoking cessation aids.
Topics: Alkaloids; Animals; Azocines; Benzazepines; Dihydro-beta-Erythroidine; Discrimination Learning; Dose-Response Relationship, Drug; Male; Mecamylamine; Mice; Mice, Inbred C57BL; Midazolam; Morphine; Nicotine; Nicotinic Agonists; Quinolizines; Quinoxalines; Receptors, Nicotinic; Smoking Cessation; Tobacco Use Cessation Devices; Varenicline | 2013 |
The contribution of α4β2 and non-α4β2 nicotinic acetylcholine receptors to the discriminative stimulus effects of nicotine and varenicline in mice.
Topics: Aconitine; Alkaloids; alpha7 Nicotinic Acetylcholine Receptor; Animals; Azocines; Benzamides; Bridged Bicyclo Compounds; Bridged Bicyclo Compounds, Heterocyclic; Cocaine; Dihydro-beta-Erythroidine; Discrimination, Psychological; Dopamine Uptake Inhibitors; Hypnotics and Sedatives; Ibogaine; Male; Mecamylamine; Mice; Mice, Inbred C57BL; Midazolam; Nerve Tissue Proteins; Nicotine; Nicotinic Agonists; Nicotinic Antagonists; Pyridines; Quinolizines; Receptors, Nicotinic; Varenicline | 2017 |