midazolam has been researched along with pitavastatin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Grime, K; Riley, RJ; Webborn, PJ | 1 |
Inui, N; Kagawa, Y; Kokudai, M; Sakaeda, T; Takeuchi, K; Watanabe, H | 1 |
1 review(s) available for midazolam and pitavastatin
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
1 trial(s) available for midazolam and pitavastatin
Article | Year |
---|---|
Effects of statins on the pharmacokinetics of midazolam in healthy volunteers.
Topics: Adult; Area Under Curve; Atorvastatin; Cross-Over Studies; Cytochrome P-450 CYP3A; Drug Interactions; Drug Therapy, Combination; Female; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypnotics and Sedatives; Japan; Male; Midazolam; Pyrroles; Quinolines; Simvastatin | 2009 |
3 other study(ies) available for midazolam and pitavastatin
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Functional consequences of active hepatic uptake on cytochrome P450 inhibition in rat and human hepatocytes.
Topics: Animals; Atorvastatin; Cells, Cultured; Culture Media; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Diclofenac; Enzyme Inhibitors; Estrone; Hepatocytes; Heptanoic Acids; Humans; Hydroxylation; Liver; Midazolam; Pyrroles; Quinolines; Rats; Recombinant Proteins; Tritium | 2008 |