midazolam has been researched along with irinotecan in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (50.00) | 29.6817 |
2010's | 5 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
de Bruijn, P; de Jong, FA; Figg, WD; Friberg, LE; Graveland, WJ; Lepper, ER; Mathijssen, RH; Rietveld, T; Sparreboom, A; van Schaik, RH; Verweij, J | 1 |
Ando, Y; Araki, K; Endo, H; Fujita, K; Kodama, K; Miya, T; Nagashima, F; Narabayashi, M; Sasaki, Y; Yamamoto, W | 1 |
Creemers, GJ; de Jong, FA; Friberg, LE; Loos, WJ; Mathijssen, RH; Planting, AS; Sparreboom, A; van der Bol, JM; Verweij, J; Wiemer, EA | 1 |
Aohara, F; Fujimura, Y; Harakawa, N; Hasegawa, R; Katori, N; Kim, SR; Maekawa, K; Naito, M; Niwa, T; Okuda, H; Sai, K; Saito, Y; Sawada, J; Tohkin, M; Yoshimura, T | 1 |
1 review(s) available for midazolam and irinotecan
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
1 trial(s) available for midazolam and irinotecan
Article | Year |
---|---|
A CYP3A4 phenotype-based dosing algorithm for individualized treatment of irinotecan.
Topics: Adult; Aged; Algorithms; Antineoplastic Agents, Phytogenic; Camptothecin; Carcinoma; Colorectal Neoplasms; Cytochrome P-450 CYP3A; Drug Dosage Calculations; Female; Humans; Individuality; Irinotecan; Male; Midazolam; Middle Aged; Models, Biological; Neoplasm Metastasis; Phenotype; Precision Medicine; Prodrugs | 2010 |
8 other study(ies) available for midazolam and irinotecan
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Physicochemical determinants of human renal clearance.
Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes.
Topics: Adult; Aged; Antineoplastic Agents, Phytogenic; Area Under Curve; Breath Tests; Camptothecin; Carbon Radioisotopes; Chromatography, High Pressure Liquid; Confidence Intervals; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Drug Administration Schedule; Enzyme Inhibitors; Erythromycin; Female; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Glucuronosyltransferase; Humans; Irinotecan; Male; Midazolam; Middle Aged; Phenotype; Predictive Value of Tests; Prospective Studies | 2004 |
Gefitinib (Iressa) inhibits the CYP3A4-mediated formation of 7-ethyl-10-(4-amino-1-piperidino)carbonyloxycamptothecin but activates that of 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxycamptothecin from irinotecan.
Topics: Camptothecin; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Gefitinib; Humans; Irinotecan; Microsomes, Liver; Midazolam; Quinazolines | 2005 |
CYP3A4*16 and CYP3A4*18 alleles found in East Asians exhibit differential catalytic activities for seven CYP3A4 substrate drugs.
Topics: Alleles; Animals; Asia, Eastern; Atorvastatin; Biocatalysis; Camptothecin; Carbamazepine; Cytochrome P-450 CYP3A; Docetaxel; Heptanoic Acids; Humans; Irinotecan; Midazolam; Models, Molecular; Paclitaxel; Pyrroles; Spodoptera; Substrate Specificity; Taxoids; Terfenadine | 2010 |