midazolam and gefitinib

midazolam has been researched along with gefitinib in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (41.67)29.6817
2010's7 (58.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Andricopulo, AD; Moda, TL; Montanari, CA1
Lombardo, F; Obach, RS; Waters, NJ1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Dalvie, D; Loi, CM; Smith, DA1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Aleo, MD; Bonin, PD; Luo, Y; Potter, DM; Swiss, R; Will, Y1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Ando, Y; Araki, K; Endo, H; Fujita, K; Kodama, K; Miya, T; Nagashima, F; Narabayashi, M; Sasaki, Y; Yamamoto, W1
Cantarini, MV; Fuhr, R; Holt, A; Swaisland, HC1
Baker, SD; He, P; Hidalgo, M; Li, J; Zhao, M1
Chaplain, MAJ; Hill, L; Kapelyukh, Y; Wolf, R1

Reviews

1 review(s) available for midazolam and gefitinib

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Trials

1 trial(s) available for midazolam and gefitinib

ArticleYear
Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics.
    Clinical pharmacokinetics, 2006, Volume: 45, Issue:6

    Topics: Adolescent; Adult; Aged; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Female; Gefitinib; Genotype; Humans; Male; Midazolam; Middle Aged; Phenotype; Quinazolines

2006

Other Studies

10 other study(ies) available for midazolam and gefitinib

ArticleYear
Hologram QSAR model for the prediction of human oral bioavailability.
    Bioorganic & medicinal chemistry, 2007, Dec-15, Volume: 15, Issue:24

    Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2007
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
Which metabolites circulate?
    Drug metabolism and disposition: the biological fate of chemicals, 2013, Volume: 41, Issue:5

    Topics: Humans; Metabolic Clearance Rate; Pharmaceutical Preparations

2013
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump.
    Hepatology (Baltimore, Md.), 2014, Volume: 60, Issue:3

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Chemical and Drug Induced Liver Injury; Humans; Male; Mitochondria, Liver; Rats; Rats, Sprague-Dawley; Severity of Illness Index

2014
Gefitinib (Iressa) inhibits the CYP3A4-mediated formation of 7-ethyl-10-(4-amino-1-piperidino)carbonyloxycamptothecin but activates that of 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxycamptothecin from irinotecan.
    Drug metabolism and disposition: the biological fate of chemicals, 2005, Volume: 33, Issue:12

    Topics: Camptothecin; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Gefitinib; Humans; Irinotecan; Microsomes, Liver; Midazolam; Quinazolines

2005
Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2007, Jun-15, Volume: 13, Issue:12

    Topics: Anesthetics, Intravenous; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Erlotinib Hydrochloride; Gefitinib; Humans; Microsomes, Liver; Midazolam; Protein Kinase Inhibitors; Quinazolines; Recombinant Proteins

2007
The usage of a three-compartment model to investigate the metabolic differences between hepatic reductase null and wild-type mice.
    Mathematical medicine and biology : a journal of the IMA, 2017, 03-01, Volume: 34, Issue:1

    Topics: Angiogenesis Inhibitors; Animals; Cytochrome P-450 Enzyme System; Disease Models, Animal; GABA Modulators; Gefitinib; Liver; Mice; Mice, Transgenic; Midazolam; Models, Biological; NADPH-Ferrihemoprotein Reductase; Protein Kinase Inhibitors; Quinazolines; Thalidomide

2017