micafungin and epigallocatechin-gallate

micafungin has been researched along with epigallocatechin-gallate* in 2 studies

Other Studies

2 other study(ies) available for micafungin and epigallocatechin-gallate

ArticleYear
Biofilm formation of the black yeast-like fungus Exophiala dermatitidis and its susceptibility to antiinfective agents.
    Scientific reports, 2017, 02-17, Volume: 7

    Various fungi have the ability to colonize surfaces and to form biofilms. Fungal biofilm-associated infections are frequently refractory to targeted treatment because of resistance to antifungal drugs. One fungus that frequently colonises the respiratory tract of cystic fibrosis (CF) patients is the opportunistic black yeast-like fungus Exophiala dermatitidis. We investigated the biofilm-forming ability of E. dermatitidis and its susceptibility to various antiinfective agents and natural compounds. We tested 58 E. dermatitidis isolates with a biofilm assay based on crystal violet staining. In addition, we used three isolates to examine the antibiofilm activity of voriconazole, micafungin, colistin, farnesol, and the plant derivatives 1,2,3,4,6-penta-O-galloyl-b-D-glucopyranose (PGG) and epigallocatechin-3-gallate (EGCG) with an XTT reduction assay. We analysed the effect of the agents on cell to surface adhesion, biofilm formation, and the mature biofilm. The biofilms were also investigated by confocal laser scan microscopy. We found that E. dermatitidis builds biofilm in a strain-specific manner. Invasive E. dermatitidis isolates form most biomass in biofilm. The antiinfective agents and the natural compounds exhibited poor antibiofilm activity. The greatest impact of the compounds was detected when they were added prior cell adhesion. These findings suggest that prevention may be more effective than treatment of biofilm-associated E. dermatitidis infections.

    Topics: Antifungal Agents; Bacterial Adhesion; beta-Glucans; Biofilms; Catechin; Colistin; Cystic Fibrosis; Echinocandins; Exophiala; Farnesol; Humans; Lipopeptides; Micafungin; Microbial Sensitivity Tests; Mycoses; Voriconazole

2017
Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts.
    Biochemical and biophysical research communications, 2006, Aug-25, Volume: 347, Issue:2

    This is the first report to investigate the antifungal susceptibility of 21 clinical isolates of seven Candida species to epigallocatechin 3-O-gallate (EGCg) and to compare with six antifungal agents, amphotericin B (AMPH), fluconazole (FLCZ), flucytosin (5FC), itraconazole (ITCZ), micafungin (MCFG), and miconazole (MCZ), using a method following the National Committee for Clinical Laboratory Standards (NCCLS) M27-A guidelines. Among the tested species, Candida glabrata exhibited the highest susceptibility to EGCg (MIC50, 0.5-1 microg/ml and MIC90, 1-2 microg/ml) compared favorably with FLCZ, although they were slightly less susceptible than to AMPH, 5FC, MCFG, ITCZ, and MCZ. Candida guilliemondii and Candida parapsilosis (MIC50, 1-4 microg/ml and MIC90, 2-16 microg/ml) were also susceptible to EGCg, although they appear to be slightly less susceptible to EGCg than C. glabrata and the other antifungal agents tested. Moreover, the susceptibility of Candida krusei strains (MIC50, 2 microg/ml and MIC90, 4-8 microg/ml) to EGCg was approximately 2- to 8-fold higher than those of 5FC and FLCZ. Our data indicate that EGCg can inhibit clinically pathogenic Candida species, although the concentrations of EGCg for antifungal susceptibility were slightly higher than those of tested antifungal agents on the whole. Based on these results, we suggest that EGCg may be effectively used as a possible agent or adjuvant for antifungal therapy in Candidiasis.

    Topics: Amphotericin B; Antifungal Agents; Candida; Candidiasis; Catechin; Dose-Response Relationship, Drug; Echinocandins; Fluconazole; Flucytosine; Humans; Itraconazole; Lipopeptides; Lipoproteins; Micafungin; Miconazole; Microbial Sensitivity Tests; Peptides, Cyclic; Species Specificity

2006