mibolerone has been researched along with nilutamide* in 2 studies
2 other study(ies) available for mibolerone and nilutamide
Article | Year |
---|---|
Three-dimensional structure-activity relationships of nonsteroidal ligands in complex with androgen receptor ligand-binding domain.
We studied the three-dimensional quantitative structure-activity relationships (3D QSAR) of 70 structurally and functionally diverse androgen receptor (AR) binding compounds using the comparative molecular similarity indices analysis (CoMSIA) method. The compound set contained 67 nonsteroidal analogues of flutamide, nilutamide, and bicalutamide whose binding mode to AR was unknown. Docking was used to identify the preferred binding modes for the nonsteroidal compounds within the AR ligand-binding pocket (LBP) and to generate the ligand alignment for the 3D QSAR analysis. The alignment produced a statistically significant and predictive model, validated by random group cross-validation and external test sets (q(2)(LOO) = 0.656, SDEP = 0.576, r(2) = 0.911, SEE = 0.293; q(2)(10) = 0.612, q(2)(5) = 0.571; pred-r(2) = 0.800). Additional model validation comes from the CoMSIA maps that were interpreted with respect to the LBP structure. The model takes into account and links the AR LBP structure, docked ligand structures, and the experimental binding activities. The results provide valuable information on intermolecular interactions between nonsteroidal ligands and the AR LBP. Topics: Anilides; Binding Sites; Flutamide; Imidazolidines; Ligands; Models, Molecular; Nitriles; Quantitative Structure-Activity Relationship; Receptors, Androgen; Tosyl Compounds | 2005 |
Androgens induce divergent proliferative responses in human breast cancer cell lines.
Although the majority of primary human breast cancers express the androgen receptor (AR), the role of androgens in breast cancer growth and progression is poorly understood. We have investigated the effects of the naturally occurring androgen, dihydrotestosterone (DHT), and a synthetic non-metabolizable androgen, mibolerone, on the proliferation of six human breast cancer cell lines. The anti-proliferative and proliferative effects of androgens were only observed in cell lines that expressed the AR. Two of the AR-positive cell lines, T47-D and ZR-75-1 were growth inhibited in the presence of either DHT or mibolerone, while the proliferation of MCF-7 and MDA-MB-453 cells was increased by both androgens. Co-incubation of cultures with 1 nM DHT and a 100-fold excess of the androgen receptor antagonist, hydroxyflutamide, resulted in reversal of both inhibitory and stimulatory effects of DHT on T47-D, MCF-7 and MDA-MB-453 cell proliferation, indicating that DHT action is mediated by the AR in these lines. Hydroxyflutamide only partially reversed the DHT-induced growth inhibition of ZR-75-1 cultures, which suggests that growth inhibition of these cells may be mediated by non-AR pathways of DHT (or DHT metabolite) action. Mibolerone action on breast cancer cell growth was similar to that of DHT, with the exception that growth stimulation of MCF-7 and MDA-MB-453 cells was only partially reversed in the presence of a 100-fold excess of hydroxyflutamide. Anandron, another androgen receptor antagonist, was able to reverse all inhibitory and stimulatory actions of the androgens. AR antisense oligonucleotides reduced the level of immunoreactive AR expression in MDA-MB-453 and ZR-75-1 cells by more than 60%, but only reversed the growth inhibitory action of mibolerone in ZR-75-1 cultures. The results suggest that androgen action in breast cancer cell lines may not be solely mediated by binding of androgen to the AR. For example, metabolites of DHT with oestrogenic activity, or androgen binding to receptors other than the AR, may explain the divergent responses to androgens observed in different breast cancer cell lines. Topics: Androgen Receptor Antagonists; Androgens; Breast Neoplasms; Cell Division; Dihydrotestosterone; Flutamide; Humans; Imidazoles; Imidazolidines; Nandrolone; Oligonucleotides, Antisense; Receptors, Androgen; Tumor Cells, Cultured | 1995 |