mibolerone and bicalutamide

mibolerone has been researched along with bicalutamide* in 9 studies

Other Studies

9 other study(ies) available for mibolerone and bicalutamide

ArticleYear
Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.
    Molecular & cellular proteomics : MCP, 2015, Volume: 14, Issue:5

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic responses dependent upon cellular context.

    Topics: Amino Acid Sequence; Androgen Antagonists; Anilides; Cell Line, Tumor; Cyproterone Acetate; Flutamide; Gene Expression Regulation, Neoplastic; Humans; Male; Molecular Sequence Annotation; Molecular Sequence Data; Mutation; Nandrolone; Neoplasm Proteins; Nitriles; Prostate; Proteome; Receptors, Androgen; Signal Transduction; Tosyl Compounds

2015
Effects of treatment with androgen receptor ligands on microRNA expression of prostate cancer cells.
    Toxicology, 2015, Jul-03, Volume: 333

    Post-transcriptional regulation by microRNA (miRNA) is an important aspect of androgen receptor (AR) signalling in prostate cancer cells. However, the global profiling of miRNA expression in prostate cancer cells following treatment with AR ligands has not been reported so far. In this study we examined the effect of treatment with two AR agonists (mibolerone (MIB) and dihydrotestosterone (DHT)) and an AR antagonist (bicalutamide (BIC)) on miRNA expression in the human androgen-dependent LNCaP prostate cancer cell line using microarray technology and verification of selected miRNA using quantitative real-time PCR (qRT-PCR). No miRNA was identified as differentially expressed following treatment with the AR antagonist BIC. In contrast, a number of common and compound-specific alterations in miRNA expression were observed following treatment with AR agonists. Unexpectedly it was found that treatment with the AR agonists resulted in the repression of miR-221, a miRNA previously established to be involved with prostate cancer development. This observation indicates that this miRNA may have a more complex role in prostate cancer development than considered previously. Treatment with MIB led to an induction of miR-210 expression, a hypoxia-related miRNA. This miRNA is reported to be involved in cell adaptation to hypoxia and thus induction in conditions of normoxia may be important in driving metabolic changes observed in prostate cancer. Thus examining the effect of AR agonists and antagonists on miRNA expression can provide novel insights into the response of cells to AR ligands and subsequent downstream events.

    Topics: Androgen Antagonists; Androgens; Anilides; Antineoplastic Agents, Hormonal; Cell Line, Tumor; Cell Proliferation; Dihydrotestosterone; Dose-Response Relationship, Drug; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Kallikreins; Ligands; Male; MicroRNAs; Nandrolone; Neoplasms, Hormone-Dependent; Nitriles; Oligonucleotide Array Sequence Analysis; Prostate-Specific Antigen; Prostatic Neoplasms; Real-Time Polymerase Chain Reaction; Receptors, Androgen; Time Factors; Tosyl Compounds

2015
Three-dimensional structure-activity relationships of nonsteroidal ligands in complex with androgen receptor ligand-binding domain.
    Journal of medicinal chemistry, 2005, Feb-24, Volume: 48, Issue:4

    We studied the three-dimensional quantitative structure-activity relationships (3D QSAR) of 70 structurally and functionally diverse androgen receptor (AR) binding compounds using the comparative molecular similarity indices analysis (CoMSIA) method. The compound set contained 67 nonsteroidal analogues of flutamide, nilutamide, and bicalutamide whose binding mode to AR was unknown. Docking was used to identify the preferred binding modes for the nonsteroidal compounds within the AR ligand-binding pocket (LBP) and to generate the ligand alignment for the 3D QSAR analysis. The alignment produced a statistically significant and predictive model, validated by random group cross-validation and external test sets (q(2)(LOO) = 0.656, SDEP = 0.576, r(2) = 0.911, SEE = 0.293; q(2)(10) = 0.612, q(2)(5) = 0.571; pred-r(2) = 0.800). Additional model validation comes from the CoMSIA maps that were interpreted with respect to the LBP structure. The model takes into account and links the AR LBP structure, docked ligand structures, and the experimental binding activities. The results provide valuable information on intermolecular interactions between nonsteroidal ligands and the AR LBP.

    Topics: Anilides; Binding Sites; Flutamide; Imidazolidines; Ligands; Models, Molecular; Nitriles; Quantitative Structure-Activity Relationship; Receptors, Androgen; Tosyl Compounds

2005
A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor.
    Journal of medicinal chemistry, 2004, Jul-15, Volume: 47, Issue:15

    We examined the three-dimensional quantitative structure-activity relationship (QSAR) of a group of endogenous and synthetic compounds for the androgen receptor (AR) using comparative molecular field analysis (CoMFA). The goal of these studies was to identify structural features necessary for high binding affinity and optimization of selective androgen receptor modulators (SARMs). A homology model of the AR was used as a scaffold to align six lead compounds that served as templates for alignment of the remaining 116 structures prior to CoMFA modeling. The conventional r(2) and cross-validated q(2) relating observed and predicted relative binding affinity (RBA) were 0.949 and 0.593, respectively. Comparison of predicted and observed RBA for a test set of 10 compounds resulted in an r(2) of 0.954, demonstrating the excellent predictive ability of the model. These integrated homology modeling and CoMFA studies identified critical amino acids for SARM interactions and provided QSAR data as the basis for mechanistic studies of AR structure, function, and design of optimized SARMs.

    Topics: Anilides; Heterocyclic Compounds, 3-Ring; Ligands; Models, Molecular; Molecular Conformation; Molecular Structure; Nitriles; Quantitative Structure-Activity Relationship; Quinolines; Receptors, Androgen; Static Electricity; Steroids; Tosyl Compounds

2004
Affinity labeling of the androgen receptor with nonsteroidal chemoaffinity ligands.
    Biochemical pharmacology, 1999, Oct-15, Volume: 58, Issue:8

    We synthesized a series of potential chemoaffinity ligands for the androgen receptor (AR) by means of structural modifications of bicalutamide, a known nonsteroidal antiandrogen used in the treatment of hormone-dependent prostate cancer. We determined AR binding affinities of these ligands, identified chemoaffinity ligands by exchange assays, and confirmed irreversible binding to the AR by Scatchard analyses. AR binding affinity was determined in a competitive binding assay with a radiolabeled high-affinity AR ligand, [3H]mibolerone ([3H]MIB). For exchange assays, AR were incubated with an excess of each ligand, and then adsorbed onto hydroxyapatite (HAP). HAP-bound AR then were incubated with [3H]MIB to determine the remaining exchangeable specific binding sites. To determine the concentration of binding sites (Bmax), using Scatchard analysis, AR were incubated with a fixed concentration of ligand and increasing [3H]MIB concentrations. The ligands showed a wide range of AR binding affinities. In the exchange assays, three isothiocyanate derivatives of R-bicalutamide, the p-isothiocyanate (R-4), the p-thio-isothiocyanate (R-6), and the m-isothiocyanate (R-3), reduced exchangeable specific binding of [3H]MIB by 85, 84, and 50%, respectively. The S-isomer of p-thio-isothiocyanate (S-6), which showed 700-fold lower AR binding affinity than R-6, did not reduce exchangeable specific binding of [3H]MIB. In Scatchard analyses, the isothiocyanate derivatives R-3, R-4, and R-6 showed significant and progressive reduction in Bmax at increasing concentrations. The results indicate that initial specific reversible AR binding was required for subsequent covalent labeling, and that R-3, R-4, and R-6 bound the AR specifically and irreversibly. These isothiocyanate derivatives of R-bicalutamide are the first specific chemoaffinity ligands for the AR, and will provide valuable tools for the molecular characterization of the ligand binding domain of the AR.

    Topics: Affinity Labels; Androgen Antagonists; Anilides; Animals; Binding, Competitive; Ligands; Male; Nandrolone; Nitriles; Rats; Rats, Sprague-Dawley; Receptors, Androgen; Stereoisomerism; Tosyl Compounds

1999
Discovery of nonsteroidal androgens.
    Biochemical and biophysical research communications, 1998, Mar-06, Volume: 244, Issue:1

    Nonsteroidal androgens have not been reported. During studies to identify affinity ligands for the androgen receptor in our laboratory, we synthesized several electrophilic nonsteroidal ligands for the androgen receptor and examined their receptor binding affinity and ability to stimulate receptor-mediated transcriptional activation. We found that three of these ligands (1) bound the androgen receptor with affinity similar to that of dihydrotestosterone (the endogenous ligand) and (2) mimicked the effects of dihydrotestosterone on receptor-mediated transcriptional activation (i.e., they were receptor agonists). These studies demonstrate that nonsteroidal ligands can be structurally modified to produce agonist activity. These ligands thus represent the first members of a novel class of androgens with potential therapeutic applications in male fertility and hormone replacement therapy.

    Topics: Androgens; Anilides; Animals; Binding, Competitive; Dihydrotestosterone; Kinetics; Ligands; Male; Nandrolone; Nitriles; Rats; Rats, Sprague-Dawley; Receptors, Androgen; Testosterone Congeners; Tosyl Compounds

1998
Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP.
    Cancer research, 1997, Mar-15, Volume: 57, Issue:6

    In addition to modulation of cell proliferation and stimulation of prostate-specific antigen secretion, one of the most striking effects of androgens on the human prostate cancer cell line LNCaP is the accumulation of neutral lipids. These lipids are synthesized de novo, suggesting that LNCaP cells express all enzymes required for endogenous lipogenesis and that the expression and/or activity of some of these enzymes is affected by androgens. One of the key enzymes involved in lipogenesis is fatty acid synthase (FAS), a potential prognostic enzyme and therapeutic target that is found to be frequently overexpressed in a variety of cancers including prostate cancer. Here, using Northern blot analysis, the gene encoding FAS is shown to be abundantly expressed in LNCaP cells and in two other prostate cancer cell lines tested (PC-3 and DU-145). In LNCaP cells, androgen treatment (10(-8) M R1881) causes a 3-4-fold increase in FAS mRNA levels. Concomitantly with the increase in FAS gene expression, androgens induce a 10-12-fold stimulation of FAS activity. Effects are dose- and time-dependent and follow courses similar to those of the androgen induction of lipid accumulation. In support of the involvement of the androgen receptor, steroid specificity of regulation of FAS activity is in agreement with the aberrant ligand specificity of the mutated androgen receptor in LNCaP cells. Stimulation of FAS activity is inhibited by the antiandrogen Casodex (bicalutamide) and is absent in the androgen receptor-negative cell lines PC-3 and DU-145. Taken together, these data demonstrate that androgens, mediated by the androgen receptor, stimulate the expression and activity of FAS and suggest that stimulation of FAS activity represents at least part of the mechanism by which androgens induce the accumulation of neutral lipids in LNCaP cells.

    Topics: Adenocarcinoma; Androgen Antagonists; Androgens; Anilides; Dihydrotestosterone; Dose-Response Relationship, Drug; Enzyme Induction; Fatty Acid Synthases; Gene Expression Regulation, Neoplastic; Humans; Lipids; Male; Metribolone; Nandrolone; Neoplasm Proteins; Nitriles; Prostatic Neoplasms; Receptors, Androgen; Testosterone; Testosterone Congeners; Tosyl Compounds; Tumor Cells, Cultured

1997
Androgen-induced inhibition of proliferation in human breast cancer MCF7 cells transfected with androgen receptor.
    Endocrinology, 1997, Volume: 138, Issue:4

    Sex steroids control the proliferation of their target cells through two different pathways: 1) proliferative response (Step-1); and 2) inhibition of cell proliferation (Step-2). Mechanisms of cell proliferation regulation are incompletely understood; however, there is general agreement with the notion that sex steroid receptors play an important role in the control of the proliferation of sex steroid target cells. To test this hypothesis, a full human androgen receptor (AR) vector was transfected into human breast cancer MCF7 cells. The cloned cells that stably express the AR, called MCF7-AR1 cells, contained approximately five times more AR than the wild-type MCF7 cells from which they were derived. These AR-transfected cells retained their capacity to proliferate when estrogens were added to 10% charcoal-dextran stripped human serum but did not acquire the ability to proliferate when androgens were added to this medium. In serumless medium (ITDME), these cells proliferated maximally, as MCF7 cells did; however, natural and synthetic androgens prevented the AR-transfected cells from proliferating. Inhibition of cell proliferation occurred when physiological androgen concentrations (1 nM) were added to ITDME; this effect was almost completely reversed by Casodex, a synthetic androgen antagonist. Under the effect of androgens added to ITDME, MCF7-AR1 cells were arrested in the G0/G1 phase within 24 h. These data suggest that: 1) the androgen-induced inhibition of cell proliferation (Step-2) is AR-mediated; and 2) the AR may be necessary, but not sufficient, to mediate the androgen-induced proliferative response (Step-1).

    Topics: Androgen Antagonists; Androgens; Anilides; Blotting, Western; Breast Neoplasms; Cell Cycle; Cell Division; Dihydrotestosterone; Dose-Response Relationship, Drug; Female; Flutamide; Humans; In Vitro Techniques; Metribolone; Nandrolone; Nitriles; Receptors, Androgen; Testosterone; Testosterone Congeners; Tosyl Compounds; Transfection; Tumor Cells, Cultured

1997
Enantioselective binding of Casodex to the androgen receptor.
    Xenobiotica; the fate of foreign compounds in biological systems, 1996, Volume: 26, Issue:2

    1. The biologic activity of androgens is mediated through the formation of a non-covalent androgen receptor (AR)-steroid complex. Casodex and other antiandrogens inhibit formation of this complex and thus negate the role of endogenous steroids in androgen-dependent growth of prostate. 2. Casodex is currently available as a racemic mixture. The goal of this investigation was to determine the in vitro AR binding affinities of the individual isomers of Casodex. 3. The (R) or (S) isomers of Casodex were synthesized according to the general synthetic scheme proposed by Tucker et al. for (S)-Casodex, using (R) or (S)-proline as the chiral matrix respectively. 4. ARs were isolated from rat ventral prostate tissue by homogenization and differential centrifugation, and used as the receptor source. 5. AR binding studies were conducted by incubation of the cytosol with 1 nM 3H-mibolerone (a synthetic androgen) and increasing concentrations of each isomer (10(-12) - 10(-5) M). Bound radioligand was quantitated by liquid scintillation counting. 6. Ki for (R)-Casodex (11.0 +/- 1.5 nM) was about 30 times lower than that of (S)-Casodex (364 +/- 10 nM). Ki for the racemate was 20.2 +/- 2.0 nM. 7. This study demonstrated that (R)-Casodex has a higher binding affinity than its stereoisomer and suggests that the antiandrogenic activity of racemic Casodex is almost completely due to the (R)-isomer.

    Topics: Androgen Antagonists; Anilides; Animals; Binding, Competitive; Cytosol; Kinetics; Male; Nandrolone; Nitriles; Orchiectomy; Prostate; Rats; Rats, Sprague-Dawley; Receptors, Androgen; Stereoisomerism; Tosyl Compounds

1996