Page last updated: 2024-08-24

mibefradil and quinacrine

mibefradil has been researched along with quinacrine in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (75.00)29.6817
2010's1 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J1
Danis, M; Derouin, F; Farhati, K; Franetich, JF; Galvez, J; Garcia-Domenech, R; Hannoun, L; Mahmoudi, N; Mazier, D; Sauerwein, R1
Lombardo, F; Obach, RS; Waters, NJ1
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B1

Other Studies

4 other study(ies) available for mibefradil and quinacrine

ArticleYear
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
    Journal of medicinal chemistry, 2008, Jan-24, Volume: 51, Issue:2

    Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase

2008
New active drugs against liver stages of Plasmodium predicted by molecular topology.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:4

    Topics: Animals; Antimalarials; Hepatocytes; Humans; Liver; Mice; Models, Biological; Parasitic Sensitivity Tests; Plasmodium yoelii; Structure-Activity Relationship

2008
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
    Journal of applied toxicology : JAT, 2012, Volume: 32, Issue:10

    Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers

2012