mibefradil has been researched along with mexiletine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Topliss, JG; Yoshida, F | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Campillo, NE; Guerra, A; Páez, JA | 1 |
Cooper, J; Cui, Y; Fink, M; Gavaghan, DJ; Heath, BM; McMahon, NC; Mirams, GR; Noble, D; Sher, A | 1 |
Chen, L; Fei, J; Mei, Y; Ren, S; Yan, SF; Zeng, J; Zhang, JZ | 1 |
5 other study(ies) available for mibefradil and mexiletine
Article | Year |
---|---|
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2010 |
Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk.
Topics: Action Potentials; Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Computer Simulation; Dogs; Dose-Response Relationship, Drug; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Guinea Pigs; HEK293 Cells; Humans; Ion Channels; Kinetics; Models, Cardiovascular; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Potassium Channel Blockers; Rabbits; Risk Assessment; Risk Factors; Sodium Channel Blockers; Sodium Channels; Torsades de Pointes; Transfection | 2011 |
Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors.
Topics: Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Discovery; Enzyme Inhibitors; Humans; Inhibitory Concentration 50; Kinetics; Microsomes, Liver; Models, Molecular; Molecular Dynamics Simulation; Substrate Specificity | 2013 |