Page last updated: 2024-08-24

mibefradil and disopyramide

mibefradil has been researched along with disopyramide in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's6 (75.00)29.6817
2010's2 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Topliss, JG; Yoshida, F1
Keserü, GM1
Du, LP; Li, MY; Tsai, KC; Xia, L; You, QD1
Nagashima, R; Nishikawa, T; Tobita, M1
Lombardo, F; Obach, RS; Waters, NJ1
Jia, L; Sun, H1
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Brown, AM; Bruening-Wright, A; Kramer, J; Kuryshev, YA; Myatt, G; Obejero-Paz, CA; Verducci, JS1

Other Studies

8 other study(ies) available for mibefradil and disopyramide

ArticleYear
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods.
    Bioorganic & medicinal chemistry letters, 2003, Aug-18, Volume: 13, Issue:16

    Topics: Cation Transport Proteins; Databases, Factual; Discriminant Analysis; Ether-A-Go-Go Potassium Channels; Holography; Linear Models; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship

2003
The pharmacophore hypotheses of I(Kr) potassium channel blockers: novel class III antiarrhythmic agents.
    Bioorganic & medicinal chemistry letters, 2004, Sep-20, Volume: 14, Issue:18

    Topics: Anti-Arrhythmia Agents; Models, Biological; Models, Molecular; Potassium Channel Blockers; Potassium Channels; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2004
A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors.
    Bioorganic & medicinal chemistry letters, 2005, Jun-02, Volume: 15, Issue:11

    Topics: Animals; CHO Cells; Cricetinae; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Potassium Channel Blockers; Potassium Channels, Voltage-Gated

2005
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Support vector machines classification of hERG liabilities based on atom types.
    Bioorganic & medicinal chemistry, 2008, Jun-01, Volume: 16, Issue:11

    Topics: Animals; Arrhythmias, Cardiac; CHO Cells; Computer Simulation; Cricetinae; Cricetulus; Discriminant Analysis; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Chemical; Patch-Clamp Techniques; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Predictive Value of Tests; ROC Curve

2008
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
MICE models: superior to the HERG model in predicting Torsade de Pointes.
    Scientific reports, 2013, Volume: 3

    Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Theoretical; Patch-Clamp Techniques; Predictive Value of Tests; Torsades de Pointes

2013