metribolone has been researched along with benzyloxycarbonylleucyl-leucyl-leucine-aldehyde* in 3 studies
3 other study(ies) available for metribolone and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde
Article | Year |
---|---|
Androgen regulated HN1 leads proteosomal degradation of androgen receptor (AR) and negatively influences AR mediated transactivation in prostate cells.
We recently reported that hematological and neurological expressed 1 (HN1) is a ubiquitously expressed, EGF-regulated gene. Expression of HN1 in prostate cell lines down-regulates PI3K-dependent Akt activation. Here, we investigate whether HN1 is regulated by androgens through the putative androgen response elements (AREs) found in its promoter. Knockdown of HN1 expression by siRNA silencing leads to an increase in Akt((S473)) phosphorylation, resulting in the translocation of androgen receptor (AR) to the nucleus; these effects can be abrogated by the non-specific Akt inhibitor LY294002 but not by the ERK inhibitor PD98059. Furthermore, HN1 overexpression correlates with an increase in ubiquitination-mediated degradation (a consequence of the decrease in S213/210 phosphorylation of AR), ultimately resulting in the down-regulation of AR-mediated expression of the KLK3, KLK4, NKX3.1 and STAMP2 genes. We also found that HN1 overexpression suppresses colony formation as well as R1881-mediated growth in LNCaP cells, while it has the opposite effect (increasing colony formation but not proliferation) in PC-3 and DU145 cells. Therefore, we suggest that HN1 maintains a balance between the androgen-regulated nuclear translocation of AR and steady-state Akt phosphorylation, predominantly in the absence of androgens. If so, the balance between cell growth and EGF- and AR-signaling must be tightly regulated by HN1. This work has important implications for prostate cancer research, as AR, EGFR and HN1 are known to be highly expressed in prostate adenocarcinomas. Topics: Androgens; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Dexamethasone; Estradiol; Gene Expression; Gene Expression Regulation; Glucocorticoids; Humans; Kallikreins; Leupeptins; Male; Metribolone; Microtubule-Associated Proteins; Nerve Tissue Proteins; Nuclear Proteins; Phosphorylation; Prostatic Neoplasms; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Transport; Proteolysis; Proto-Oncogene Proteins c-akt; Receptors, Androgen; Transcriptional Activation | 2012 |
Hunterian Lecture. Characterisation of human prostate epithelial progenitor differentiation in response to androgens.
A stem cell model of prostate cancer tumourigenesis explains progression to castration resistant prostate cancer (CRPC) and offers novel perspectives in targeting this cancer in its more advanced forms. Androgen receptor (AR) regulated pathways are central mechanisms in progression to CRPC. However, AR was thought to be lacking in prostate stem cell enriched fractions. Potential low levels of AR expression in stem cell enriched cells were investigated and potential direct effects of androgen were examined.. Human prostate stem cell enriched populations, based on high α(2)β(1) integrin expression (α(2)β(1)(hi)), were selected from primary human prostate tissue in men undergoing transurethral prostatectomy or cystoprostatectomy. Effects on differentiation were assayed with flow cytometry using differentiation-specific markers.. Low levels of AR were demonstrable in α(2)β(1)(hi) cells following inhibition of the proteasome using MG132. Furthermore, a direct effect of androgen was shown in stabilising/inducing AR expression. Androgen treatment of α(2)β(1)(hi) cells was associated with the induction of differentiation using a number of differentiation-specific markers (prostatic acid phosphatase, cytokeratin 18 and AR) with increases ranging from 49% to 67% (p<0.05). These effects were blocked with the AR-specific inhibitor bicalutamide (p<0.05). These data support a role of direct androgen activity on stem cell enriched cells in the prostate and the implications of these findings are discussed. Topics: Aged; Aged, 80 and over; Androgen Antagonists; Androgen Receptor Antagonists; Androgens; Anilides; Antigens, Differentiation; Biomarkers, Tumor; Cell Transformation, Neoplastic; Cysteine Proteinase Inhibitors; Epithelial Cells; Humans; Leupeptins; Male; Metribolone; Middle Aged; Neoplastic Stem Cells; Nitriles; Prostatic Neoplasms; Receptors, Androgen; Testosterone Congeners; Tosyl Compounds | 2011 |
The role of androgen in determining differentiation and regulation of androgen receptor expression in the human prostatic epithelium transient amplifying population.
Abnormal differentiation in epithelial stem cells or their immediate proliferative progeny, the transiently amplifying population (TAP), may explain malignant pathogenesis in the human prostate. These models are of particular importance as differing sensitivities to androgen among epithelial cell subpopulations during differentiation are recognised and may account for progression to androgen independent prostate cancer. Androgens are crucial in driving terminal differentiation and their indirect effects via growth factors from adjacent androgen responsive stroma are becoming better characterised. However, direct effects of androgen on immature cells in the context of a prostate stem cell model have not been investigated in detail and are studied in this work. In alpha2beta1hi stem cell enriched basal cells, androgen analogue R1881 directly promoted differentiation by the induction of differentiation-specific markers CK18, androgen receptor (AR), PSA and PAP. Furthermore, treatment with androgen down-regulated alpha2beta1 integrin expression, which is implicated in the maintenance of the immature basal cell phenotype. The alpha2beta1hi cells were previously demonstrated to lack AR expression and the direct effects of androgen were confirmed by inhibition using the anti-androgen bicalutamide. AR protein expression in alpha2beta1hi cells became detectable when its degradation was repressed by the proteosomal inhibitor MG132. Stratifying the alpha2beta1hi cells into stem (CD133(+)) and transient amplifying population (TAP) (CD133(-)) subpopulations, AR mRNA expression was found to be restricted to the CD133(-) (TAP) cells. The presence of a functional AR in the TAP, an androgen independent subpopulation for survival, may have particular clinical significance in hormone resistant prostate cancer, where both the selection of immature cells and functioning AR regulated pathways are involved. Topics: AC133 Antigen; Acid Phosphatase; Aged; Aged, 80 and over; Androgen Antagonists; Anilides; Antigens, CD; Cell Differentiation; Cell Proliferation; Cell Transformation, Neoplastic; Cells, Cultured; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Epithelial Cells; Fibroblast Growth Factor 7; Glycoproteins; Humans; Integrin alpha2beta1; Keratin-18; Leupeptins; Male; Metribolone; Middle Aged; Neoplastic Stem Cells; Nitriles; Peptides; Phenotype; Prostate-Specific Antigen; Prostatic Neoplasms; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Tyrosine Phosphatases; Receptors, Androgen; RNA, Messenger; Signal Transduction; Testosterone Congeners; Tosyl Compounds | 2007 |