methylnaltrexone has been researched along with endomorphin-1* in 2 studies
2 other study(ies) available for methylnaltrexone and endomorphin-1
Article | Year |
---|---|
The in vitro pharmacology of the peripherally restricted opioid receptor antagonists, alvimopan, ADL 08-0011 and methylnaltrexone.
This study characterized the pharmacology of the peripherally restricted opioid receptor antagonists, alvimopan, its metabolite, ADL 08-0011, and methylnaltrexone. The activities of the compounds were investigated with respect to human or guinea pig opioid receptor binding and function in recombinant cell lines and mechanical responsiveness of the guinea pig ileum. Alvimopan and ADL 08-0011 had higher binding affinity than methylnaltrexone at human mu opioid receptors (pK (i) values of 9.6, 9.6, and 8.0, respectively). The compounds had different selectivities for the mu receptor over human delta and guinea pig kappa opioid receptors. ADL 08-0011 had the highest mu receptor selectivity. With respect to their mu opioid receptor functional activity ([(35)S]GTPgammaS incorporation), methylnaltrexone had a positive intrinsic activity, consistent with partial agonism, unlike alvimopan and ADL 08-0011, which had negative intrinsic activities. Alvimopan, ADL 08-0011, and methylnaltrexone antagonized inhibitory responses mediated by the mu opioid agonist, endomorphin-1 (pA (2) values of 9.6, 9.4, and 7.6, respectively) and by U69593, a kappa opioid agonist (pA (2) values of 8.4, 7.2, and 6.7, respectively). In morphine-naive guinea pig ileum, methylnaltrexone reduced, while alvimopan and ADL 08-0011 increased, the amplitude of electrically evoked contractions and spontaneous mechanical activity. In tissue from morphine-dependent animals, alvimopan and ADL 08-0011 increased spontaneous activity to a greater degree than methylnaltrexone. The data suggested that alvimopan-induced contractions resulted predominantly from an interaction with kappa opioid receptors. It is concluded that alvimopan, ADL 08-0011, and methylnaltrexone differ in their in vitro pharmacological properties, particularly with respect to opioid receptor subtype selectivity and intrinsic activity. The clinical significance of the data from this study remains to be determined. Topics: Analgesics, Opioid; Animals; Benzeneacetamides; CHO Cells; Cricetinae; Cricetulus; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Guanosine 5'-O-(3-Thiotriphosphate); Guinea Pigs; Humans; Ileum; In Vitro Techniques; Male; Morphine; Muscle Contraction; Naltrexone; Narcotic Antagonists; Oligopeptides; Piperidines; Pyrrolidines; Quaternary Ammonium Compounds; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Recombinant Proteins; Transfection | 2007 |
Differential antagonism of endomorphin-1 and endomorphin-2 supraspinal antinociception by naloxonazine and 3-methylnaltrexone.
To determine if different subtypes of mu-opioid receptors were involved in antinociception induced by endomorphin-1 and endomorphin-2, the effect of pretreatment with various mu-opioid receptor antagonists beta-funaltrexamine, naloxonazine and 3-methylnaltrexone on the inhibition of the paw-withdrawal induced by endomorphin-1 and endomorphin-2 given intracerebroventricularly (i.c.v.) were studied in ddY male mice. The inhibition of the paw-withdrawal induced by i.c.v. administration of endomorphin-1, endomorphin-2 or DAMGO was completely blocked by the pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine (40 mg/kg), indicating that the antinociception induced by all these peptides are mediated by the stimulation of mu-opioid receptors. However, naloxonazine, a mu1-opioid receptor antagonist pretreated s.c. for 24h was more effective in blocking the antinociception induced by endomorphin-2, than by endomorphin-1 or DAMGO given i.c.v. Pretreatment with a selective morphine-6 beta-glucuronide blocker 3-methylnaltrexone 0.25mg/kg given s.c. for 25 min or co-administration of 3-methylnaltrexone 2.5 ng given i.c.v. effectively attenuated the antinociception induced by endomorphin-2 given i.c.v. and co-administration of 3-methylnaltrexone shifted the dose-response curves for endomorphin-2 induced antinociception to the right by 4-fold. The administration of 3-methylnaltrexone did not affect the antinociception induced by endomorphin-1 or DAMGO given i.c.v. Our results indicate that the antinociception induced by endomorphin-2 is mediated by the stimulation of subtypes of mu-opioid receptor, which is different from that of mu-opioid receptor subtype stimulation by endomorphin-1 and DAMGO. Topics: Analgesics; Animals; Dose-Response Relationship, Drug; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Pain; Pain Measurement; Quaternary Ammonium Compounds; Reflex; Time Factors | 2002 |