methyldopa has been researched along with leucine in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (14.29) | 18.7374 |
1990's | 1 (14.29) | 18.2507 |
2000's | 2 (28.57) | 29.6817 |
2010's | 3 (42.86) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Ax, F; Bonham, NM; Hallberg, A; Karlén, A; Lennernäs, H; Winiwarter, S | 1 |
Cha, SH; Chairoungdua, A; Endou, H; Kanai, Y; Kim, DK; Matsuo, H | 1 |
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM | 1 |
Avdeef, A; Tam, KY | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Munro, HN; Roel, LE; Weiss, BF; Wurtman, RJ | 1 |
7 other study(ies) available for methyldopa and leucine
Article | Year |
---|---|
Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach.
Topics: Humans; Intestinal Absorption; Jejunum; Models, Biological; Multivariate Analysis; Permeability; Pharmaceutical Preparations; Structure-Activity Relationship | 1998 |
Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters.
Topics: Amino Acid Sequence; Amino Acid Transport Systems; Amino Acid Transport Systems, Neutral; Animals; Anion Transport Proteins; Bacterial Proteins; Carrier Proteins; Cloning, Molecular; Escherichia coli Proteins; Female; Intestine, Small; Kinetics; Levodopa; Mice; Molecular Sequence Data; Oocytes; Phenylalanine; Rats; Recombinant Proteins; Sequence Alignment; Sequence Homology, Amino Acid; Substrate Specificity; Tryptophan; Tyrosine; Xenopus laevis | 2001 |
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
Topics: | 2008 |
How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability?
Topics: Animals; Disease Models, Animal; Dogs; Humans; Jejunal Diseases; Kidney Diseases; Models, Biological; Permeability; Porosity; Regression Analysis | 2010 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
The effect of L-DOPA on brain polysomes and protein synthesis: probable mediation by intracellular dopamine.
Topics: 5-Hydroxytryptophan; Animals; Aromatic Amino Acid Decarboxylase Inhibitors; Brain; Carbon Radioisotopes; Decarboxylation; Depression, Chemical; Dihydroxyphenylalanine; Dopamine; Drug Interactions; Enzyme Inhibitors; Hydrazines; Leucine; Levodopa; Lysine; Male; Methyldopa; Nerve Tissue Proteins; Norepinephrine; Polyribosomes; Rats; S-Adenosylmethionine; Time Factors | 1974 |