methylcellulose and regorafenib

methylcellulose has been researched along with regorafenib* in 2 studies

Other Studies

2 other study(ies) available for methylcellulose and regorafenib

ArticleYear
Impact of co-administered stabilizers on the biopharmaceutical performance of regorafenib amorphous solid dispersions.
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2021, Volume: 169

    Poor solubility of drug candidates is a well-known and thoroughly studied challenge in the development of oral dosage forms. One important approach to tackle this challenge is the formulation as an amorphous solid dispersion (ASD). To reach the desired biopharmaceutical improvement a high supersaturation has to be reached quickly and then be conserved long enough for absorption to take place. In the presented study, various formulations of regorafenib have been produced and characterized in biorelevant in-vitro experiments. Povidone-based formulations, which are equivalent to the marketed product Stivarga®, showed a fast drug release but limited stability and robustness after that. In contrast, HPMCAS-based formulations exhibited excellent stability of the supersaturated solution, but unacceptably slow drug release. The attempt to combine the desired attributes of both formulations by producing a ternary ASD failed. Only co-administration of HPMCAS as an external stabilizer to the rapidly releasing Povidone-based ASDs led to the desired dissolution profile and high robustness. This optimized formulation was tested in a pharmacokinetic animal model using Wistar rats. Despite the promising in-vitro results, the new formulation did not perform better in the animal model. No differences in AUC could be detected when compared to the conventional (marketed) formulation. These data represent to first in-vivo study of the new concept of external stabilization of ASDs. Subsequent in-vitro studies revealed that temporary exposure of the ASD to gastric medium had a significant and long-lasting effect on the dissolution performance and externally administered stabilizer could not prevent this sufficiently. By applying the co-administered HPMCAS as an enteric coating onto Stivarga tablets, a new bi-functional approach was realized. This approach achieved the desired tailoring of the dissolution profile and high robustness against gastric medium as well as against seeding.

    Topics: Animals; Biological Products; Dosage Forms; Drug Administration Routes; Drug Compounding; Drug Liberation; Excipients; Methylcellulose; Phenylurea Compounds; Povidone; Pyridines; Rats; Solid Phase Extraction; Solubility; Tablets, Enteric-Coated

2021
Precipitation from amorphous solid dispersions in biorelevant dissolution testing: The polymorphism of regorafenib.
    International journal of pharmaceutics, 2021, Jun-15, Volume: 603

    Amorphous Solid Dispersions (ASDs) are a major drug formulation technique to achieve higher bioavailability for poorly water-soluble active pharmaceutical ingredients. So far, dissolution tailoring and supersaturation enhancement have been studied in detail, whereas less is known about the importance of formed precipitates with amorphous or crystalline states at the site of drug absorption. Regorafenib monohydrate (RGF MH), a multikinase inhibitor drug categorized as Biopharmaceutics Classification System (BCS) class II compound, was formulated with povidone K25 and hypromellose acetate succinate (HPMCAS) as an ASD. Here, for the first time, the RGF precipitation process as well as the physicochemical properties of the arising precipitates are investigated. The formed precipitates from biorelevant dissolution showed varying drug content and were analyzed offline by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), confocal Raman microscopy (CRM), X-ray powder diffraction (XRPD), and small angle X-ray scattering (SAXS). In addition to different crystalline RGF precipitates, an amorphous co-precipitate of RGF and HPMCAS was identified, which was suppressed in the presence of PVP. Wide angle X-ray scattering (WAXS) and isothermal calorimetry (ITC) were used to track the precipitation process of RGF in-situ. From calorimetric data, the precipitation profile was calculated. RGF forms precipitates in multiple polymorphic states dependent on the environmental conditions, i.e., dissolution media composition and chosen excipients. The engineered formation of defined amorphous structures in-vivo may be a promising future drug formulation strategy.

    Topics: Calorimetry, Differential Scanning; Methylcellulose; Phenylurea Compounds; Povidone; Pyridines; Scattering, Small Angle; Solubility; X-Ray Diffraction

2021