methylcellulose has been researched along with adinazolam-mesylate* in 5 studies
5 other study(ies) available for methylcellulose and adinazolam-mesylate
Article | Year |
---|---|
Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release.
We characterized the effect of hydroxypropyl methylcellulose (HPMC)/lactose ratio and HPMC viscosity grade (molecular weight) on solute release and swelling of matrix tablets. We used a semiquantitative optical imaging method to monitor the swelling of matrices with HPMC content from 20% to 80% (w/w) and four viscosity grades. Several aspects of the swelling process common to all formulations were revealed: (i) swelling is anisotropic with a preferential expansion in the axial direction, (ii) swelling is isotropic with respect to the gel layer thickness and composition in both axial and radial directions, (iii) the gel layer develops in three stages, and (iv) water penetration is Fickian in nature and essentially constant for all formulations. We monitored simultaneously drug, lactose, and HPMC release. Lactose and drug release rates were superimposed, indicating a similar diffusional release mechanism and no interaction with HPMC. The strong dependence of HPMC release on viscosity grade is explained on the basis of the concept of polymer disentanglement concentration. We analyzed drug release rates using a model for a reservoir-type release system that incorporates swelling kinetics. HPMC/lactose ratio modulates drug release rate by altering drug diffusivity, a function of gel composition. In contrast, HPMC viscosity grade impacts matrix dissolution and gel layer thickness development below a critical molecular weight. For slowly dissolving matrices containing high viscosity grade (> 4000 cps) HPMC, similar drug release rates are observed mainly due to the same drug diffusivity as a result of the identical gel composition and thickness. For fast dissolving matrices (< or = 100 cps) swelling inhomogeneity is proposed as being responsible for a higher apparent drug diffusivity and release rate. Topics: Antidepressive Agents; Benzodiazepines; Drug Carriers; Gels; Hypromellose Derivatives; Lactose; Methylcellulose; Tablets; Water | 1996 |
Diffusion in HPMC gels. I. Determination of drug and water diffusivity by pulsed-field-gradient spin-echo NMR.
This work describes diffusivity measurements of drug (adinazolam mesylate) and water in a variety of solutions including polymer gels.. Pulsed-field-gradient spin-echo (PFGSE) NMR methods were employed to measure the diffusivity.. In binary component solutions, adinazolam diffusivity is generally found to exhibit an exponential dependence on the concentration of the viscosity-inducing agent (VIA), which is glucose, lactose, maltoheptaose, hydroxypropyl methylcellulose (HPMC) or drug itself. An increasing obstruction power to drug diffusion from glucose to HPMC is observed, which can be related to the polymerization degree of the VIA. In contrast, adinazolam diffusivity in HPMC gels shows little dependence upon the polymer viscosity grades examined (K100LV, K4M, and K15M). The temperature dependence of adinazolam diffusivity in dilute VIA solutions reveals that the diffusion barrier for the drug is similar to that for self-diffusion of water.. The retarding effect from the VIA for drug diffusion is concluded to be primarily associated with a steric obstruction mechanism. In multicomponent gels with varied concentrations of drug, lactose and HPMC, the drug diffusivity can be approximately described as an exponential function of the summation of the products of the proportionality constant (Ki) and concentration for each VIA component. In contrast, water diffusion behavior shows an universal exponential dependence upon the VIA concentration and small dependence upon the nature of the VIA. The interpretation of the diffusivity data is discussed and compared to two existing diffusion models (Yasuda and Mackie-Meares models). Topics: Benzodiazepines; Chemistry, Pharmaceutical; Delayed-Action Preparations; Diffusion; Gels; Hypromellose Derivatives; Kinetics; Lactose; Magnetic Resonance Spectroscopy; Methylcellulose; Solutions; Tablets; Temperature; Viscosity; Water | 1995 |
Diffusion in HPMC gels. II. Prediction of drug release rates from hydrophilic matrix extended-release dosage forms.
A mathematical model is described for the prediction of the relative change in drug release rate as a function of formulation composition for HPMC-based extended-release (ER) tablets of adinazolam mesylate and alprazolam.. The model is based on the equation derived by Higuchi for the diffusional release of soluble drugs from polymeric matrices and on our recent measurements of the concentration dependency of adinazolam diffusivity in dilute HPMC gels and solutions. The assumptions made in applying the model include (i) that diffusion is the sole mechanism of drug release (i.e. swelling kinetics are ignored), and (ii) that the surface area-to-volume ratio and concentrations of adinazolam, lactose and HPMC in the gel layer are proportional to that of the dry tablet.. Reasonable correlations were obtained between the experimental drug release rate ratios and the predicted drug release rate ratios for ER adinazolam mesylate (R2 = 0.82) and low-dose (0.5 mg) ER alprazolam tablets (R2 = 0.87). The predictive power for a 6-fold higher dose of ER alprazolam tablets was not as good (R2 = 0.52).. These results are consistent with previous knowledge of the release mechanisms of these formulations. ER adinazolam mesylate and ER alprazolam 0.5 mg exhibit primarily a diffusion controlled release mechanism, while ER alprazolam 3 mg deviates from pure diffusional release. The limitations of the model are discussed and point to the need for continued study of the swelling kinetics of matrix ER systems. Topics: Benzodiazepines; Chemistry, Pharmaceutical; Delayed-Action Preparations; Diffusion; Hypromellose Derivatives; Lactose; Mathematical Computing; Methylcellulose; Models, Chemical; Pharmacokinetics; Predictive Value of Tests; Solutions; Tablets | 1995 |
Drug release from hydrophilic matrices. 1. New scaling laws for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer.
Two scaling laws for predicting polymer and drug release profiles from hydrophilic matrices were developed. They were developed on the basis of the diffusion layer and the polymer disentanglement concentration, rho p,dis, the critical polymer concentration below which polymer chains detach off a gelled matrix that is undergoing simultaneous swelling and dissolution. The relation between rho p,dis and molecular weight, M1 for (hydroxypropyl)methylcellulose (HPMC) in water was established as rho p,dis (g/mL) varies M-0.8. This power-law relationship for rho p,dis, along with the diffusion layer adjacent to the gelled matrix, leads to the scaling law of mp(t)/mp(infinity) varies Meq-1.15, where mp(t)/mp(infinity) is the fractional HPMC release. The scaling law explains the observation that polymer and drug release rates decreased sharply with M at low M and approach limiting values at high M. Experimentally, mp(t)/mp(infinity) was found to scale with Meq as mp(t)/mp(infinity) varies Meq-0.93, where Meq is the equivalent matrix molecular weight. Moreover, fractional drug release, md(t)/md(infinity), followed Meq as md(t)/md(infinity) varies Meq-0.48. These two scaling laws imply that, if the release profiles are known for one composition, release profiles for other compositions can be predicted. The above two power laws lead to two master curves for mp(t)/mp(infinity) and md(t)/md(infinity), suggesting that the release mechanism for soluble drugs from HPMC matrices is independent of matrix compositions, presumably via a diffusion-controlled process. Limitations of the power laws are discussed. Topics: Benzodiazepines; Chemistry, Pharmaceutical; Delayed-Action Preparations; Hypromellose Derivatives; Methylcellulose; Models, Chemical; Molecular Weight; Solubility; Tablets; Theophylline | 1995 |
Drug release from hydrophilic matrices. 2. A mathematical model based on the polymer disentanglement concentration and the diffusion layer.
A comprehensive model is developed to describe the swelling/dissolution behaviors and drug release from hydrophilic matrices. The major thrust of this model is to employ an important physical property of the polymer, the polymer disentanglement concentration, rho p,dis, the polymer concentration below which polymer chains detach off the gelled matrix. For (hydroxypropyl)methylcellulose (HPMC) in water, we estimate that rho p,dis scales with HPMC molecular weight, M, as rho p,dis varies M-0.8. Further, matrix dissolution is considered similar to the dissolution of an object immersed in a fluid. As a result, a diffusion layer separating the matrix from the bulk solution is incorporated into the transport regime. An anisotropic expansion model is also introduced to account for the anisotropic expansion of the matrix where surface area in the radial direction dominates over the axial surface area. The model predicts that the overall tablet size and the characteristic swelling time correlate with rho p,dis qualitatively. Two scaling laws are established for fractional polymer (mp(t)/mp(infinity)) and drug (md(t)/md(infinity)) released as mp(t)/mp(infinity) varies M-1.05 and md(t)/md(infinity) varies M-0.24, consistent with the limiting polymer molecular weight effect on drug release. Model predictions for polymer and drug release agree well with observations, within 15% error. Evolution of water concentration profiles and the detailed structure of a swollen matrix are discussed. Topics: Benzodiazepines; Chemistry, Pharmaceutical; Delayed-Action Preparations; Hypromellose Derivatives; Mathematics; Methylcellulose; Models, Chemical; Molecular Weight | 1995 |