methylarsine and monomethylarsonic-acid

methylarsine has been researched along with monomethylarsonic-acid* in 2 studies

Other Studies

2 other study(ies) available for methylarsine and monomethylarsonic-acid

ArticleYear
Multiscale assessment of methylarsenic reactivity in soil. 2. Distribution and speciation in soil.
    Environmental science & technology, 2011, May-15, Volume: 45, Issue:10

    Methylated forms of arsenic (As), monomethylarsenate (MMA) and dimethylarsenate (DMA), have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the distribution, speciation, and sorption of methylated As to soils requires investigation. Monomethylarsenate and DMA were reacted with a soil up to one year under aerobic and anaerobic conditions. Microsynchrotron based X-ray fluorescence (μ-SXRF) mapping studies showed that MMA and DMA were heterogeneously distributed in the soil and were mainly associated with iron oxyhydroxides, e.g., goethite, in the soil. Micro-X-ray absorption near edge structure (XANES) spectra collected from As hotspots showed MMA and DMA were demethylated to arsenate over one year incubation under aerobic conditions. Monomethylarsenate was methylated to DMA, and DMA was maintained as DMA over a 3 month incubation under anaerobic conditions. Arsenic-iron precipitation, such as the formation of scorodite (FeAsO(4)·2H(2)O), was not observed, indicating that MMA and DMA were mainly associated with Fe-oxyhydroxides as sorption complexes.

    Topics: Adsorption; Arsenicals; Cacodylic Acid; Herbicides; Kinetics; Models, Chemical; Oxidation-Reduction; Soil; Soil Pollutants; X-Ray Absorption Spectroscopy; X-Ray Diffraction

2011
Multiscale assessment of methylarsenic reactivity in soil. 1. Sorption and desorption on soils.
    Environmental science & technology, 2011, May-15, Volume: 45, Issue:10

    Methylated forms of arsenic (As), monomethylarsenate (MMA), and dimethylarsenate (DMA) have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the persistency of these compounds in the environment is of great concern. MMA and DMA sorption and desorption were investigated in soils, varying in mineralogical and organic matter (OM) contents. Sorption studies showed that the MMA sorption capacity and rate were greater than DMA sorption. Al/Fe-oxyhydroxides were the main sorbents in the soils, and the sorption capacity was proportional to the Al/Fe concentration in the soils. Extended X-ray absorption fine structure (EXAFS) studies showed that both MMA/DMA-Fe interatomic distances were around 3.3 Å, which were indicative of bidentate binuclear inner-sphere complex formation. Desorption studies showed that not all of the sorbed MMA or DMA was desorbed due to the strong binding between MMA/DMA and Al/Fe-oxyhydroxide surfaces via possible inner-sphere complex formation. The amount of the desorbed MMA and DMA decreased as the sorption residence time increased. For example, 77% of sorbed MMA was desorbed from the Reybold subsoil after 1 day residence time, while 66% of sorbed MMA was desorbed from the soil after six months of residence time. The decreases in desorption were likely due to As speciation changes from MMA/DMA to inorganic arsenate, which was more strongly bound to the surface.

    Topics: Adsorption; Arsenicals; Cacodylic Acid; Herbicides; Kinetics; Models, Chemical; Soil; Soil Pollutants; X-Ray Absorption Spectroscopy

2011