methyl-triclosan has been researched along with 4-octylphenol* in 2 studies
2 other study(ies) available for methyl-triclosan and 4-octylphenol
Article | Year |
---|---|
Organic Micropollutants in Wastewater Effluents and the Receiving Coastal Waters, Sediments, and Biota of Lyttelton Harbour (Te Whakaraupō), New Zealand.
Coastal ecosystems are receiving environments for micropollutants due to high levels of associated anthropogenic activities. Effluent discharges from wastewater treatment plants are a significant source of micropollutants to coastal environments. Wastewater effluents, seawater, sediments, and green-lipped mussels (Perna canaliculus) in Lyttelton Harbour (Te Whakaraupō), Christchurch, New Zealand, were analysed for a suite of personal care products and steroid hormones during a 1-year period. In wastewater effluents, the concentration of methyl paraben (mParaben), ethyl paraben (eParaben), propyl paraben (pParaben), butyl paraben (bParaben), 4-t-octylphenol (OP), 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), benzophenone-1 (BP-1), triclosan, methyl triclosan (mTric), Bisphenol A (BPA), Estrone (E1), 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), and Estriol (E3) ranged from < 0.6 to 429 ng L Topics: Benzhydryl Compounds; Benzophenones; Ecosystem; Environmental Monitoring; Estradiol; Estrone; Ethinyl Estradiol; New Zealand; Phenols; Triclosan; Wastewater; Water Pollutants, Chemical | 2020 |
Monitoring and mass balance analysis of endocrine disrupting compounds and their transformation products in an anaerobic-anoxic-oxic wastewater treatment system in Xiamen, China.
We investigated the occurrence, removal and mass balance of 8 endocrine disrupting compounds (EDCs), including estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), triclosan (TCS), triclocarbon (TCC), 4-n-nonyl phenol (NP) and 4-n-octyl phenol (OP), along with 5 of their transformation products (TPs), including 4-hydroxy estrone (4-OH E1), 4-hydroxy estradiol (4-OH E2), methyl triclosan (MeTCS), carbanilide (NCC), dichlorocarbanilide (DCC) in a wastewater treatment plant. Generally, E3 showed the highest concentrations in wastewater with median value of 514 ng/L in influent, while TCS and TCC showed highest level in sludge and suspended solids (SS) with median value of 960 and 724 μg/kg, respectively. Spatial variations were observed along each unit of the wastewater treatment processes for dissolved analytes in wastewater and adsorbed analytes in suspended solids and sludge. Special emphasis was placed to understand the mass load of EDCs and their TPs to the wastewater treatment unit and mass loss during the wastewater treatment processes. Mass loss based on both aqueous and suspended phase concentration revealed that majority of these chemicals were significantly removed during the treatment process except for TCS, TCC, and three of their TPs (MeTCS, NCC, DCC), which were released or generated during the treatment process. Mass load results showed that 42.4 g of these EDCs and their TPs entered this wastewater treatment system daily via influent, whereas 6.15 g and 7.60 g were discharged through effluent and sludge. Topics: China; Endocrine Disruptors; Estradiol; Estriol; Estrone; Ethinyl Estradiol; Phenols; Sewage; Triclosan; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical | 2018 |