methyl methanethiosulfonate has been researched along with ethyl methanesulfonate in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (25.00) | 18.2507 |
2000's | 3 (75.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Ehrlich, BE; Quinn, KE | 1 |
Biber, J; Forster, IC; Lambert, G; Murer, H | 1 |
Loussouarn, G; Masia, R; Nichols, CG; Phillips, LR; Rose, T | 1 |
Bhattacharyya, J; Enkvetchakul, D; Jeliazkova, I; Nichols, CG | 1 |
4 other study(ies) available for methyl methanethiosulfonate and ethyl methanesulfonate
Article | Year |
---|---|
Methanethiosulfonate derivatives inhibit current through the ryanodine receptor/channel.
Topics: Animals; Calcium Channels; Cytoplasm; Ethyl Methanesulfonate; In Vitro Techniques; Ion Channels; Lipid Bilayers; Methyl Methanesulfonate; Microsomes; Muscle Proteins; Muscles; Rabbits; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sulfhydryl Compounds; Thiosulfates | 1997 |
Cysteine residues and the structure of the rat renal proximal tubular type II sodium phosphate cotransporter (rat NaPi IIa).
Topics: Amino Acid Sequence; Amino Acid Substitution; Animals; Carrier Proteins; Cysteine; Disulfides; Ethyl Methanesulfonate; Kidney Tubules, Proximal; Mesylates; Methyl Methanesulfonate; Molecular Sequence Data; Mutagenesis, Site-Directed; Oocytes; Protein Structure, Tertiary; Rats; Reducing Agents; Serine; Sodium-Phosphate Cotransporter Proteins; Sodium-Phosphate Cotransporter Proteins, Type II; Sodium-Phosphate Cotransporter Proteins, Type IIa; Symporters; Xenopus laevis | 2000 |
Flexibility of the Kir6.2 inward rectifier K(+) channel pore.
Topics: Amino Acid Sequence; Animals; Cadmium; COS Cells; Cysteine; Dimerization; Ethyl Methanesulfonate; Indicators and Reagents; Mesylates; Methyl Methanesulfonate; Models, Biological; Models, Molecular; Molecular Sequence Data; Pliability; Point Mutation; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Inwardly Rectifying; Protein Conformation; Quaternary Ammonium Compounds; Sequence Homology, Amino Acid | 2001 |
Control of inward rectifier K channel activity by lipid tethering of cytoplasmic domains.
Topics: Bacterial Proteins; Burkholderia pseudomallei; Cell-Free System; Cloning, Molecular; Cysteine; Ethyl Methanesulfonate; Ion Channel Gating; Membrane Lipids; Mesylates; Methyl Methanesulfonate; Models, Molecular; Mutation; Potassium Channels, Inwardly Rectifying; Protein Binding; Protein Conformation; Protein Structure, Tertiary; Rubidium Radioisotopes; Sulfhydryl Reagents | 2007 |