methyl methanesulfonate has been researched along with fk 866 in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 1 (50.00) | 2.80 |
Authors | Studies |
---|---|
Brown, AR; Goellner, EM; Grimme, B; Lin, YC; Mitchell, L; Sobol, RW; Sugrue, KF; Tang, JB; Trivedi, RN; Wang, XH | 1 |
Alhumaydhi, FA; Aljohani, ASM; Bordin, DL; Charlier, CF; de O Lopes, D; Elliott, RM; Henriques, JAP; Lloyd, CB; McNicholas, MD; Meira, LB; Milano, L; Plant, KE; Villela, I | 1 |
2 other study(ies) available for methyl methanesulfonate and fk 866
Article | Year |
---|---|
Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair.
Topics: Acrylamides; Adenosine Triphosphate; Antineoplastic Agents, Alkylating; Cell Line, Tumor; Cell Survival; Dacarbazine; DNA Glycosylases; DNA Repair; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Drug Synergism; Glioblastoma; Humans; Hydroxylamines; Immunoblotting; Methyl Methanesulfonate; NAD; Piperidines; Poly(ADP-ribose) Polymerases; RNA Interference; Temozolomide | 2011 |
Alkyladenine DNA glycosylase deficiency uncouples alkylation-induced strand break generation from PARP-1 activation and glycolysis inhibition.
Topics: Acrylamides; Alkylation; Animals; Cells, Cultured; Cytokines; DNA Breaks; DNA Glycosylases; DNA Repair; Fibroblasts; Glycolysis; Methyl Methanesulfonate; Mice; Mice, Knockout; NAD; Nicotinamide Phosphoribosyltransferase; Piperidines; Poly (ADP-Ribose) Polymerase-1; Primary Cell Culture | 2020 |