methyl-jasmonate has been researched along with parthenolide* in 2 studies
2 other study(ies) available for methyl-jasmonate and parthenolide
Article | Year |
---|---|
The effects of several abiotic elicitors on the expression of genes of key enzymes involved in the parthenolide biosynthetic pathway and its content in feverfew plant (
Feverfew is an herb used to treat different diseases such as migraine headaches. Due to the economic aspect of its metabolites in the pharmaceutical industry, establishing new approaches to produce the compounds on a large scale is essential. To investigate the effects of stimulators on parthenolide synthesis, feverfew plants were treated with different elicitors, including methyl jasmonate, salicylic acid, NaCl, aluminum oxide, and magnesium aluminate spinel nanoparticles. The expression of genes, E-beta-caryophyllene synthase, Germacrene A synthase, and Costunolide Synthase in the metabolite biosynthesis pathway was examined using qRT-PCR. In addition, parthenolide content, total flavonoids, and polyphenols antioxidant activity were evaluated by HPLC and spectrophotometry. Our results indicated that methyl jasmonate and salicylic acid were more effective on the final concentration of parthenolide, but magnesium aluminate spinel affected the genes' expression, positively. The results show that the elicitors can be used to increase the metabolite in the plant, commercially. Topics: Biosynthetic Pathways; Plant Extracts; Salicylic Acid; Sesquiterpenes; Tanacetum parthenium | 2022 |
Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium.
Up-regulation of germacrene A synthase and down-regulation of parthenolide hydroxylase genes play key role in parthenolide accumulation of feverfew plants treated with methyl jasmonate and salicylic acid. Parthenolide is an important sesquiterpene lactone due to its anti-migraine and anti-cancer properties. Parthenolide amount was quantified by high-performance liquid chromatography after foliar application of methyl jasmonate (100 µM) or salicylic acid (1.0 mM) on feverfew leaves in time course experiment (3-96 h). Results indicate that exogenous application of methyl jasmonate or salicylic acid activated parthenolide biosynthesis. Parthenolide content reached its highest amount at 24 h after methyl jasmonate or salicylic acid treatments, which were 3.1- and 1.96-fold higher than control plants, respectively. Parthenolide transiently increased due to methyl jasmonate or salicylic acid treatments until 24 h, but did not show significant difference compared with control plants at 48 and 96 h time points in both treatments. Also, the transcript levels of early pathway (upstream) genes of terpene biosynthesis including 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase and hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and the biosynthetic genes of parthenolide including germacrene A synthase, germacrene A oxidase, costunolide synthase and parthenolide synthase were increased by methyl jasmonate and salicylic acid treatments, but with different intensity. The transcriptional levels of these genes were higher in methyl jasmonate-treated plants than salicylic acid-treated plants. Parthenolide content measurements along with expression pattern analysis of the aforementioned genes and parthenolide hydroxylase as side branch gene of parthenolide suggest that the expression patterns of early pathway genes were not directly consistent with parthenolide accumulation pattern; hence, parthenolide accumulation is probably further modulated by the expression of its biosynthetic genes, especially germacrene A synthase and also its side branch gene, parthenolide hydroxylase. Topics: Acetates; Cyclopentanes; Gene Expression Regulation, Plant; Oxylipins; Plant Growth Regulators; Salicylic Acid; Sesquiterpenes; Tanacetum parthenium | 2015 |