methyl-jasmonate and linalool

methyl-jasmonate has been researched along with linalool* in 10 studies

Other Studies

10 other study(ies) available for methyl-jasmonate and linalool

ArticleYear
Impacts of methyl jasmonate on Selaginella martensii: volatiles, transcriptomics, phytohormones, and gas exchange.
    Journal of experimental botany, 2023, 02-05, Volume: 74, Issue:3

    Methyl jasmonate (MeJA) induces various defence responses in seed plants, but for early plant lineages, information on the potential of jasmonates to elicit stress signalling and trigger physiological modifications is limited. The spikemoss Selaginella martensii was exposed to a range of MeJA concentrations (0, 10, 25, and 50 mM), and biogenic volatile organic compound (BVOC) emissions, photosynthetic rate (A), and stomatal conductance (gs) were continuously measured. In addition, changes in phytohormone concentrations and gene expression were studied. Enhancement of methanol, lipoxygenase pathway volatiles and linalool emissions, and reductions in A and gs, were MeJA dose-dependent. Before MeJA treatment, the concentration of 12-oxo-phytodienoic acid (OPDA) was 7-fold higher than jasmonic acid (JA). MeJA treatment rapidly increased OPDA and JA concentrations (within 30 min), with the latter more responsive. Some genes involved in BVOC biosynthesis and OPDA-specific response were up-regulated at 30 min after MeJA spraying, whereas those in the JA signalling pathway were not affected. Although JA was synthesized in S. martensii, OPDA was prioritized as a signalling molecule upon MeJA application. MeJA inhibited primary and enhanced secondary metabolism; we propose that fast-emitted linalool could serve as a marker of elicitation of stress-induced metabolism in lycophytes.

    Topics: Acetates; Cyclopentanes; Oxylipins; Plant Growth Regulators; Selaginellaceae; Transcriptome

2023
Functional characterization of a bark-specific monoterpene synthase potentially involved in wounding- and methyl jasmonate-induced linalool emission in rubber (Hevea brasiliensis).
    Journal of plant physiology, 2023, Volume: 282

    Rubber (Hevea brasiliensis) is a latex-producing plant that often encounters mechanical wounding, as well as pathogen and pest attacks through wound sites during and after tapping. Terpenoids play an important role in the ecological interactions of many plant species, and their diversity is mainly generated by enzymes known as terpene synthases (TPS). In this study, one cDNA sequence encoding a putative terpene synthase, HbTPS20, was obtained from the bark tissues of H. brasiliensis. The encoded protein contains 610 amino acids with a putative N-terminal plastid transit peptide of approximately 70 residues. It belongs to the TPS-b subfamily. Further phylogenetic analysis showed that HbTPS20 formed a separate branch that diverged from the progenitor of all other potentially functional terpene synthases of the rubber TPS-b subfamily. The truncated HbTPS20 without the signal peptide coding sequence was successfully expressed in E. coli and in vitro enzymatic assays with geranyl diphosphate (GPP) or neryl diphosphate (NPP) as a substrate defined HbTPS20 as an active linalool synthase (HbLIS) with the ability to produce linalool as the principal product. RT-qPCR analysis showed that the highest transcript levels of HbTPS20 were found in barks, and this gene was expressed at 2.26- and 250-fold greater levels in the bark tissues of wounded and MeJA-treated plants, respectively, than in those of the control plants. This indicates that this gene may be involved in the induced stress responses of rubber.

    Topics: Escherichia coli; Gene Expression Regulation, Plant; Hevea; Phylogeny; Plant Bark; Plant Proteins; Rubber

2023
The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development.
    Plant science : an international journal of experimental plant biology, 2021, Volume: 309

    Linalool is an aromatic monoterpene produced in the Chinese medicinal plant Dendrobium officinale, but little information is available on the regulation of linalool biosynthesis. Here, a novel basic helix-loop-helix (bHLH) transcription factor, DobHLH4 from D. officinale, was identified and functionally characterized. The expression profile of DobHLH4 was positively correlated with that of DoTPS10 (R

    Topics: Acetates; Acyclic Monoterpenes; Alkyl and Aryl Transferases; Basic Helix-Loop-Helix Transcription Factors; Biosynthetic Pathways; Cyclopentanes; Dendrobium; Flowers; Gene Expression Regulation, Plant; Oils, Volatile; Oxylipins; Plant Growth Regulators; Plant Oils; Plant Proteins

2021
Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis.
    Plant, cell & environment, 2018, Volume: 41, Issue:1

    Volatile terpenoids produced in tea plants (Camellia sinensis) are airborne signals interacting against other ecosystem members, but also pleasant odorants of tea products. Transcription regulation (including transcript processing) is pivotal for plant volatile terpenoid production. In this study, a terpene synthase gene CsLIS/NES was recovered from tea plants (C. sinensis cv. "Long-Men Xiang"). CsLIS/NES transcription regulation resulted in 2 splicing forms: CsLIS/NES-1 and CsLIS/NES-2 lacking a 305 bp-fragment at N-terminus, both producing (E)-nerolidol and linalool in vitro. Transgenic tobacco studies and a gene-specific antisense oligo-deoxynucleotide suppression applied in tea leaves indicated that CsLIS/NES-1, localized in chloroplasts, acted as linalool synthase, whereas CsLIS/NES-2 localized in cytosol, functioned as a potential nerolidol synthase, but not linalool synthase. Expression patterns of the 2 transcript isoforms in tea were distinctly different and responded differentially to the application of stress signal molecule methyl jasmonate. Leaf expression of CsLIS/NES-1, but not CsLIS/NES-2, was significantly induced by methyl jasmonate. Our data indicated that distinct transcript splicing regulation patterns, together with subcellular compartmentation of CsLIS/NE-1 and CsLIS/NE-2 implemented the linalool biosynthesis regulation in tea plants in responding to endogenous and exogenous regulatory factors.

    Topics: Acetates; Acyclic Monoterpenes; Alkyl and Aryl Transferases; Base Sequence; Camellia sinensis; Cyclopentanes; Flowers; Gene Expression Regulation, Plant; Monoterpenes; Nicotiana; Oxylipins; Plant Leaves; Plant Proteins; Plants, Genetically Modified; RNA Splicing; RNA, Messenger; Sesquiterpenes; Subcellular Fractions; Terpenes

2018
Phenylacetonitrile from the giant knotweed, Fallopia sachalinensis, infested by the Japanese beetle, Popillia japonica, is induced by exogenous methyl jasmonate.
    Molecules (Basel, Switzerland), 2011, Aug-03, Volume: 16, Issue:8

    Phenylacetonitrile, (E)-β-ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-α-farnesene were identified as Japanese beetle, Popillia japonica, feeding-induced volatiles from the leaves of the giant knotweed, Fallopia sachalinensis, but not by mechanical damage. Volatile emission was also induced by treatment with a cellular signaling molecule, methyl jasmonate. These results suggest that volatiles will be synthesized de novo by a biotic elicitor from P. japonica oral secretion.

    Topics: Acetates; Acetonitriles; Acyclic Monoterpenes; Alkenes; Animals; Chromatography, Gas; Coleoptera; Cyclopentanes; Feeding Behavior; Insecticides; Mass Spectrometry; Monoterpenes; Oxylipins; Plant Immunity; Plant Leaves; Polygonum; Sesquiterpenes; Terpenes; Volatilization

2011
Development of a method based on on-line reversed phase liquid chromatography and gas chromatography coupled by means of an adsorption-desorption interface for the analysis of selected chiral volatile compounds in methyl jasmonate treated strawberries.
    Journal of chromatography. A, 2010, Feb-12, Volume: 1217, Issue:7

    A method based on the use of the through oven transfer adsorption-desorption (TOTAD) interface in on-line coupling between reversed phase liquid chromatography and gas chromatography (RPLC-GC) for the determination of chiral volatile compounds was developed. In particular, the method was applied to the study of the influence of methyl jasmonate (MJ) treatment on the production and enantiomeric composition of selected aroma compounds in strawberry. The compounds studied were ethyl 2-methylbutanoate, linalool and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (i.e. furaneol), which were examined on days 3, 6 and 9 after treatment. The method developed resulted in relative standard deviations (RSDs) of 21.6%, 8.1% and 9.8% and limits of detection (LD) of 0.04, 0.07 and 0.02mg/l for ethyl 2-methylbutanoate, linalool and furaneol, respectively. The application of the RPLC-TOTAD-GC method allowed higher levels of ethyl 2-methylbutanoate, linalool and furaneol to be detected, particularly after 9 days of treatment. Besides, MJ demonstrated to affect the enantiomeric distribution of ethyl 2-methylbutanoate. On the contrary, the enantiomeric composition of linalool and furaneol kept constant in both control and MJ-treated strawberries throughout the study. These results are discussed.

    Topics: Acetates; Acyclic Monoterpenes; Adsorption; Butyrates; Chromatography, Gas; Chromatography, Reverse-Phase; Cyclopentanes; Fragaria; Fruit; Furans; Monoterpenes; Oxylipins; Plant Growth Regulators; Sensitivity and Specificity; Stereoisomerism; Volatile Organic Compounds

2010
Overexpression of the apple alcohol acyltransferase gene alters the profile of volatile blends in transgenic tobacco leaves.
    Physiologia plantarum, 2008, Volume: 134, Issue:3

    Alcohol acyltransferases (AATs) are key enzymes in ester biosynthesis. Previous studies have found that AAT may be a stress-related gene. To investigate further the function of the apple alcohol acyltransferase gene (MdAAT2), transgenic tobacco plants overexpressing MdAAT2 were generated. Gas chromatography-mass spectroscopy analysis showed that the volatile blends were altered in these transgenic tobacco leaves. Although no apple-fruity volatile esters were detected in transgenic tobacco leaves, methyl caprylate, methyl caprate, and methyl dodecanoate were newly generated, and the concentrations of methyl benzoate and methyl tetradecanoate were significantly increased, suggesting that MdAAT2 may use medium-chain fatty acyl CoA and benzoyl-CoA as acyl donors together with methanol acceptors as substrates. Surprisingly, the concentrations of linalool were significantly increased in transgenic tobacco leaves, which may mediate the repellent effect on Myzus persicae (Sulzer) aphids. Using methyl jasmonate (MeJA) and wounding treatments, we found that MdAAT2 may substitute for the partial ability of MeJA to induce the production of linalool in transgenic plants. These data suggest that MdAAT2 may be involved in the response to the MeJA signal and may play a role in the response to biotic and abiotic stress.

    Topics: Acetates; Acyclic Monoterpenes; Acyltransferases; Aldehydes; Animals; Aphids; Cyclopentanes; Esters; Food Preferences; Gas Chromatography-Mass Spectrometry; Genes, Plant; Immunoblotting; Malus; Monoterpenes; Nicotiana; Oxylipins; Plant Leaves; Plants, Genetically Modified; Solid Phase Microextraction; Volatilization

2008
Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.).
    Journal of agricultural and food chemistry, 2006, Mar-22, Volume: 54, Issue:6

    The effect of methyl jasmonate (MeJA) in terms of its induction of inherent bioactive chemicals in sweet basil (Ocimum basilicum L.) was evaluated after MeJA was sprayed on healthy basil plants. The total phenolic content of the sweet basil significantly increased after 0.1 and 0.5 mM MeJA treatments compared with the control not subjected to MeJA. Two phenolic compounds, rosmarinic acid (RA) and caffeic acid (CA), were identified as strong antioxidant constituents of the sweet basil. Their amounts also significantly increased after the MeJA treatment. In addition, eugenol and linalool increased 56 and 43%, respectively, by the 0.5 mM MeJA treatment. Due to the accumulation of RA, CA, and eugenol, which possess strong 2,2-diphenyl-1-picrylhydrazyl (DPPH*) free radical scavenging activities, the antioxidant activity of the sweet basil extract was 2.3-fold greater than that of the control after the 0.5 mM MeJA treatment. In the DPPH* assay, the EC50 values of RA, CA, and eugenol were determined as 23, 46, and 59 microM, respectively, which indicated they were 6-, 3-, and 2.4-fold more efficient than BHT (140 microM). Besides, an unidentified HPLC peak in the methanolic extract of the sweet basil was 4.3-fold higher than that of the control after the 0.5 mM MeJA treatment.

    Topics: Acetates; Acyclic Monoterpenes; Antioxidants; Caffeic Acids; Cinnamates; Cyclopentanes; Depsides; Eugenol; Monoterpenes; Ocimum basilicum; Oxylipins; Plant Growth Regulators; Rosmarinic Acid

2006
Fragrances in oolong tea that enhance the response of GABAA receptors.
    Bioscience, biotechnology, and biochemistry, 2004, Volume: 68, Issue:9

    We electrophysiologically investigated the effect of some fragrant compounds in oolong tea on the response of ionotropic gamma-aminobutyric acid (GABA) receptors (GABAA receptors) which were expressed in Xenopus oocytes. Of the tested fragrances in oolong tea, cis-jasmone, jasmine lactone, linalool oxide and methyl jasmonate significantly potentiated the response. Among these, cis-jasmone and methyl jasmonate potently potentiated the response, having a respective dissociation constant of the compound (Kp) and maximum potentiation (Vm) of 0.49 mM and 322% for cis-jasmone, and 0.84 mM and 450% for methyl jasmonate. Inhalation of 0.1% cis-jasmone or methyl jasmonate significantly increased the sleeping time of mice induced by pentobarbital, suggesting that these fragrant compounds were absorbed by the brain and thereby potentiated the GABAA receptor response. Both of these compounds may therefore have a tranquillizing effect on the brain.

    Topics: Acetates; Acyclic Monoterpenes; Animals; Cattle; Cyclopentanes; Dose-Response Relationship, Drug; Electrophysiology; Mice; Monoterpenes; Oils, Volatile; Oocytes; Oxylipins; Receptors, GABA-A; Sleep; Tea; Transfection; Xenopus

2004
Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce.
    Plant physiology, 2003, Volume: 132, Issue:3

    Terpenoids are characteristic constitutive and inducible defense chemicals of conifers. The biochemical regulation of terpene formation, accumulation, and release from conifer needles was studied in Norway spruce [Picea abies L. (Karst)] saplings using methyl jasmonate (MeJA) to induce defensive responses without inflicting physical damage to terpene storage structures. MeJA treatment caused a 2-fold increase in monoterpene and sesquiterpene accumulation in needles without changes in terpene composition, much less than the 10- and 40-fold increases in monoterpenes and diterpenes, respectively, observed in wood tissue after MeJA treatment (D. Martin, D. Tholl, J. Gershenzon, J. Bohlmann [2002] Plant Physiol 129: 1003-1018). At the same time, MeJA triggered a 5-fold increase in total terpene emission from foliage, with a shift in composition to a blend dominated by oxygenated monoterpenes (e.g. linalool) and sesquiterpenes [e.g. (E)-beta-farnesene] that also included methyl salicylate. The rate of linalool emission increased more than 100-fold and that of sesquiterpenes increased more than 30-fold. Emission of these compounds followed a pronounced diurnal rhythm with the maximum amount released during the light period. The major MeJA-induced volatile terpenes appear to be synthesized de novo after treatment, rather than being released from stored terpene pools, because they are almost completely absent from needle oleoresin and are the major products of terpene synthase activity measured after MeJA treatment. Based on precedents in other species, the induced emission of terpenes from Norway spruce foliage may have ecological and physiological significance.

    Topics: Acetates; Acyclic Monoterpenes; Circadian Rhythm; Cyclopentanes; Gene Expression Regulation, Plant; Molecular Structure; Monoterpenes; Oxylipins; Picea; Plant Leaves; Sesquiterpenes; Terpenes; Time Factors; Volatilization; Wood

2003