methyl-jasmonate and farnesyl-pyrophosphate

methyl-jasmonate has been researched along with farnesyl-pyrophosphate* in 6 studies

Other Studies

6 other study(ies) available for methyl-jasmonate and farnesyl-pyrophosphate

ArticleYear
Regulation of sesquiterpenoid metabolism in recombinant and elicited Valeriana officinalis hairy roots.
    Phytochemistry, 2016, Volume: 125

    The medicinal properties of Valerian (Valeriana officinalis) root preparations are attributed to the anxiolytic sesquiterpenoid valerenic acid and its biosynthetic precursors valerenal and valerenadiene, as well as the anti-inflammatory sesquiterpenoid β-caryophyllene. In order to study and engineer the biosynthesis of these pharmacologically active metabolites, a binary vector co-transformation system was developed for V. officinalis hairy roots. The relative expression levels and jasmonate-inducibility of a number of genes associated with sesquiterpenoid metabolism were profiled in roots: farnesyl pyrophosphate synthase (VoFPS), valerendiene synthase (VoVDS), germacrene C synthase (VoGCS), and a cytochrome P450 (CYP71D442) putatively associated with terpene metabolism based on sequence homology. Recombinant hairy root lines overexpressing VoFPS or VoVDS were generated and compared to control cultures. Overexpression of the VoFPS cDNA increased levels of the corresponding transcript 4- to 8-fold and sesquiterpene hydrocarbon accumulation by 1.5- to 4-fold. Overexpression of the VoVDS cDNA increased the corresponding transcript levels 5- to 9-fold and markedly increased yields of the oxygenated sesquiterpenoids valerenic acid and valerenal. Our findings suggest that the availability of cytoplasmic farnesyl diphosphate and valerenadiene are potential bottlenecks in Valeriana-specific sesquiterpenoid biosynthesis, which is also subject to regulation by methyl jasmonate elicitation.

    Topics: Acetates; Alkyl and Aryl Transferases; Anti-Anxiety Agents; Cyclopentanes; DNA, Complementary; Humans; Indenes; Molecular Structure; Oxylipins; Plant Roots; Polycyclic Sesquiterpenes; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Guaiane; Valerian

2016
Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.
    Journal of natural medicines, 2014, Volume: 68, Issue:4

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.

    Topics: Acetates; Amino Acid Sequence; Cyclopentanes; Farnesyltranstransferase; Gene Expression Regulation, Plant; Genes, Plant; Oxylipins; Polyisoprenyl Phosphates; Scoparia; Sequence Alignment; Sesquiterpenes; Transcriptional Activation; Yeasts

2014
Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).
    Phytochemistry, 2013, Volume: 96

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

    Topics: Acetates; Alkyl and Aryl Transferases; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexane Monoterpenes; Cyclohexenes; Cyclopentanes; Gas Chromatography-Mass Spectrometry; Gossypium; Intramolecular Lyases; Monocyclic Sesquiterpenes; Monoterpenes; Oxylipins; Phytoalexins; Polycyclic Sesquiterpenes; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Guaiane; Terpenes; Volatile Organic Compounds

2013
Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton.
    Plant physiology and biochemistry : PPB, 2013, Volume: 73

    Cotton (Gossypium hirsutum L.) plants damaged by insects emit a blend of volatiles, including monoterpenes and sesquiterpenes, which can directly repel herbivores and/or indirectly protect the plant by attracting natural enemies of the herbivores. To understand the molecular basis of terpene biosynthesis and regulation in cotton, two terpene synthase genes, GhTPS1 and GhTPS2, were heterologously expressed and characterized. Recombinant GhTPS1 accepted farnesyl pyrophosphate as substrate and produced (E)-β-caryophyllene and α-humulene. GhTPS2 was characterized as a monoterpene synthase which formed α-pinene and β-pinene using geranyl pyrophosphate as substrate. Quantitative real-time PCR analysis revealed that GhTPS1 and GhTPS2 gene expression was elevated after methyl jasmonate (MeJA) treatment in cotton leaves. Moreover, feeding of the green plant bug Apolygus lucorum, a major cotton pest in northern China, resulted in increased GhTPS2 expression in young leaves, suggesting that GhTPS2 might be involved in plant defense in cotton.

    Topics: Acetates; Adaptation, Physiological; Alkyl and Aryl Transferases; Animals; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Carbon-Oxygen Lyases; China; Cyclopentanes; Gene Expression; Genes, Plant; Gossypium; Herbivory; Insecta; Monocyclic Sesquiterpenes; Monoterpenes; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Polycyclic Sesquiterpenes; Polyisoprenyl Phosphates; Sesquiterpenes; Terpenes

2013
Studies on the expression of sesquiterpene synthases using promoter-β-glucuronidase fusions in transgenic Artemisia annua L.
    PloS one, 2013, Volume: 8, Issue:11

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production.

    Topics: Acetates; Alkyl and Aryl Transferases; Artemisia annua; Base Sequence; Blotting, Southern; Cyclopentanes; Flowers; Gene Expression Profiling; Gene Expression Regulation, Plant; Glucuronidase; Oxylipins; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Polyisoprenyl Phosphates; Promoter Regions, Genetic; Recombinant Fusion Proteins; RNA, Messenger; Sesquiterpenes; Substrate Specificity

2013
Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).
    Plant molecular biology, 2011, Volume: 77, Issue:6

    Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.

    Topics: Acetates; Alkyl and Aryl Transferases; Cyclopentanes; Diphosphates; Diterpenes; Oxylipins; Picea; Plant Growth Regulators; Polyisoprenyl Phosphates; Sesquiterpenes; Terpenes

2011