methyl-jasmonate and cyanidin

methyl-jasmonate has been researched along with cyanidin* in 2 studies

Other Studies

2 other study(ies) available for methyl-jasmonate and cyanidin

ArticleYear
Blood oranges maintain bioactive compounds and nutritional quality by postharvest treatments with γ-aminobutyric acid, methyl jasmonate or methyl salicylate during cold storage.
    Food chemistry, 2020, Feb-15, Volume: 306

    The effects of postharvest treatments with γ-aminobutyric acid (GABA), methyl jasmonate (MeJA) or methyl salicylate (MeSA) on antioxidant systems and sensory quality of blood oranges during cold storage were evaluated (150 days at 3 °C plus 2 days at 20 °C, shelf life). Fruit firmness, titratable acidity (TA), total antioxidant activity (TAA) and ascorbic acid (AA) decreased during cold storage, all these changes being delayed in treated fruit, with the greatest differences observed with the 50 µmol L

    Topics: Acetates; Anthocyanins; Catechol Oxidase; Citrus sinensis; Cold Temperature; Cyclopentanes; Food Preservation; Fruit; gamma-Aminobutyric Acid; Glucosides; Nutritive Value; Oxylipins; Phenylalanine Ammonia-Lyase; Salicylates

2020
Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench).
    Acta biologica Hungarica, 2011, Volume: 62, Issue:3

    The jasmonates, which include jasmonic acid and its methyl ester (MJ), play a central role in regulating the biosynthesis of many secondary metabolites, including flavonoids, and also are signaling molecules in environmental stresses. Synthesis of anthocyanins pigments is a final part of flavonoids pathway route. Accumulation of the pigments in young seedlings is stimulated by various environmental stresses, such as high-intensity light, wounding, pathogen attack, drought, sugar and nutrient deficiency. The anthocyanins take part in defense system against excess of light and UV-B light, and therefore it is probably main reason why young plant tissues accumulate enlarged levels of the pigments. The effects of exogenously applied MJ on level of anthocyanins, glycosides of apigenin, luteolin, quercetin and proanthocyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench) were studied. MJ decreased contents of all the found cyanidin glycosides and its aglycone in hypocotyls of buckwheat seedlings. However contents of particular anthocyanins in cotyledons of buckwheat seedlings treated with the plant hormone were not significantly different from the control. Applied doses of MJ did not affect levels of quercetin, apigenin and luteolin glycosides in the analyzed parts of buckwheat seedlings: cotyledons and hypocotyls. On the other hand, treatment of buckwheat seedlings with MJ clearly stimulated of proanthocyanidins biosynthesis in hypocotyls. We suggest that methyl jasmonate induces in hypocotyls of buckwheat seedlings the leucocyanidin reductase or anthocyanidin reductase, possible enzymes in proanthocyanidins synthesis, and/or inhibits anthocyanidin synthase, which transforms leucocyanidin into cyanidin. According to our knowledge this is the first report regarding the effect of methyl jasmonate on enhancing the accumulation of proanthocyanidins in cultivated plants.

    Topics: Acetates; Anthocyanins; Apigenin; Chromatography, High Pressure Liquid; Cyclopentanes; Dose-Response Relationship, Drug; Fagopyrum; Flavonoids; Luteolin; Oxylipins; Plant Growth Regulators; Plant Physiological Phenomena; Proanthocyanidins; Quercetin; Seedlings; Spectrophotometry

2011