methyl-jasmonate and brassinolide

methyl-jasmonate has been researched along with brassinolide* in 4 studies

Other Studies

4 other study(ies) available for methyl-jasmonate and brassinolide

ArticleYear
Comparative transcriptome analyses of genes involved in sulforaphane metabolism at different treatment in Chinese kale using full-length transcriptome sequencing.
    BMC genomics, 2019, May-14, Volume: 20, Issue:1

    Sulforaphane is a natural isothiocyanate available from cruciferous vegetables with multiple characteristics including antioxidant, antitumor and anti-inflammatory effect. Single-molecule real-time (SMRT) sequencing has been used for long-read de novo assembly of plant genome. Here, we investigated the molecular mechanism related to glucosinolates biosynthesis in Chinese kale using combined NGS and SMRT sequencing.. SMRT sequencing produced 185,134 unigenes, higher than 129,325 in next-generation sequencing (NGS). NaCl (75 mM), methyl jasmonate (MeJA, 40 μM), selenate (Se, sodium selenite 100 μM), and brassinolide (BR, 1.5 μM) treatment induced 6893, 13,287, 13,659 and 11,041 differentially expressed genes (DEGs) in Chinese kale seedlings comparing with control. These genes were associated with pathways of glucosinolates biosynthesis, including phenylalanine, tyrosine and tryptophan biosynthesis, cysteine and methionine metabolism, and glucosinolate biosynthesis. We found NaCl decreased sulforaphane and glucosinolates (indolic and aliphatic) contents and downregulated expression of cytochrome P45083b1 (CYP83b1), S-alkyl-thiohydroximatelyase or carbon-sulfur lyase (SUR1) and UDP-glycosyltransferase 74B1 (UGT74b1). MeJA increased sulforaphane and glucosinolates contents and upregulated the expression of CYP83b1, SUR1 and UGT74b1; Se increased sulforaphane; BR increased expression of CYP83b1, SUR1 and UGT74b1, and increased glucosinolates contents. The desulfoglucosinolate sulfotransferases ST5a_b_c were decreased by all treatments.. We confirmed that NaCl inhibited the biosynthesis of both indolic and aliphatic glucosinolates, while MeJA and BR increased them. MeJA and BR treatments, conferred the biosynthesis of glucosinolates, and Se and MeJA contributed to sulforaphane in Chinese kale via regulating the expression of CYP83b1, SUR1 and UGT74b1.

    Topics: Acetates; Brassica; Brassinosteroids; Cyclopentanes; Exome Sequencing; Gene Expression Profiling; Gene Expression Regulation, Plant; High-Throughput Nucleotide Sequencing; Isothiocyanates; Oxylipins; Plant Proteins; Selenic Acid; Sequence Analysis, RNA; Single-Cell Analysis; Sodium Chloride; Steroids, Heterocyclic; Sulfoxides

2019
The unusual Arabidopsis extensin gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses.
    Planta, 2003, Volume: 217, Issue:3

    We detail the expression of the Arabidopsis thaliana (L.) Heynh. atExt1 extensin gene. atExt1 is normally expressed in roots and inflorescences, and is induced by wounding, exogenously supplied salicylic acid, methyl jasmonate, auxins and brassinosteroids. Northern assays and histochemical analysis of transgenics expressing an atExt1:: gus fusion show that this gene is also induced by the brassica pathogen Xanthomonas campestris pv. campestris and that this induction is restricted to tissues close to the site of infection. Expression at regions of abscission and senescence also implicates atExt1 in these important developmental processes.

    Topics: Acetates; Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Base Sequence; Brassinosteroids; Cholestanols; Cyclopentanes; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Glucuronidase; Glycoproteins; Indoleacetic Acids; Molecular Sequence Data; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Proteins; Plant Roots; Plants, Genetically Modified; Recombinant Fusion Proteins; Salicylic Acid; Steroids, Heterocyclic; Stress, Mechanical; Xanthomonas

2003
An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1.
    Plant physiology, 2002, Volume: 130, Issue:2

    A screen for Arabidopsis mutants that were insensitive to methyl jasmonate (MeJA) in an assay for seedling root growth yielded only alleles of previously isolated mutants jar1 and coi1, with one exception. Mapping of the locus and morphological characterization of the new mutant suggested it might be allelic to axr1, which had not previously been reported to show resistance to MeJA. The F(1) from a cross of the new mutant with axr1-3 did not show complementation, confirming that these are the same genes. The new allele is called axr1-24. In addition to MeJA and indole-3-acetic acid (IAA), axr1-24 had decreased sensitivity to 1-aminocyclopropane-1-carboxylic acid, 6-benzylamino-purine, epi-brassinolide, and abscisic acid. Both axr1-24 and the previously characterized axr1-3 allele were shown to be susceptible to the opportunistic pathogen Pythium irregulare, a trait found in other jasmonate response mutants, including jar1-1. The double mutant jar1-1/axr1-3 was more resistant to inhibition of root growth by MeJA and was more susceptible to P. irregulare infection than either single mutant, suggesting these genes might act in independent response pathways. In contrast, resistance to IAA in the double mutant was not different from axr1-3. Northern-blot analysis showed that IAA induced the jasmonate-responsive lipoxygenase 2, AOS, and AtVSP gene transcripts and induction was strongly impaired in axr1-3. However, transcript induction by MeJA was only minimally affected in axr1-3. This study demonstrates that in addition to auxin signaling, the AXR1 locus is involved in MeJA response, providing a mechanistic link between jasmonate and auxin-signaling pathways.

    Topics: Abscisic Acid; Acetates; Adenine; Alleles; Amino Acids, Cyclic; Arabidopsis; Arabidopsis Proteins; Benzyl Compounds; Brassinosteroids; Cholestanols; Cyclopentanes; Gene Expression Regulation, Plant; Genetic Complementation Test; Germination; Growth Substances; Indoleacetic Acids; Kinetin; Mutation; Nucleotidyltransferases; Oxylipins; Plant Growth Regulators; Plant Roots; Purines; Pythium; Seeds; Signal Transduction; Steroids, Heterocyclic

2002
A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system.
    Plant & cell physiology, 2002, Volume: 43, Issue:1

    A tobacco peroxidase gene tpoxN1 was reported to be expressed within 1 h after wounding in leaves [Hiraga et al. (2000a) Plant Cell Physiol. 41: 165]. We describe here further results on the wound-induced tpoxN1 expression. The quick tpoxN1 induction occurred preferentially in stems and petioles, but was negligible in leaf blades even 8 h after wounding. Induced GUS activity was also detected rapidly after wounding in the stem of transgenic tobacco plants carrying the tpoxN1 promoter::GUS fusion gene, localized mainly in the vascular systems where it was maintained this level for 14 d or more. Strong GUS activity was also found in the petiole and veinlet as well as the epidermal tissue in the stem. Treatment of known inducers for wound-responsive genes such as jasmonate, 1-aminocyclopropane-1-carboxylate, spermine, phytohormones and other stress treatments did not enhance wound-induced tpoxN1 gene expression in stems at all, but rather repressed it in some cases. Studies using metabolic inhibitors suggested that phosphorylation and dephosphorylation of proteins together with de novo protein synthesis are likely to be involved in the wound-induced tpoxN1 expression as well as some other wound-responsive genes. Thus, tpoxN1 is a unique wound-inducible and possible wound-healing gene which is rapidly expressed being maintained for a long time in veins via an unknown wound-signaling pathway(s).

    Topics: Acetates; Amino Acids, Cyclic; Brassinosteroids; Cholestanols; Cyclopentanes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Histocytochemistry; Naphthaleneacetic Acids; Nicotiana; Oxylipins; Peroxidase; Phosphorylation; Plant Epidermis; Plant Growth Regulators; Plant Stems; Plants, Genetically Modified; RNA, Plant; Salicylates; Signal Transduction; Spermine; Steroids, Heterocyclic; Stress, Mechanical

2002