methyl-jasmonate has been researched along with artemisinin* in 7 studies
1 review(s) available for methyl-jasmonate and artemisinin
Article | Year |
---|---|
Gas concentration effects on secondary metabolite production by plant cell cultures.
One aspect of secondary metabolite production that has been studied relatively infrequently is the effect of gaseous compounds on plant cell behavior. The most influential gases are believed to be oxygen, carbon dioxide and other volatile hormones such as ethylene and methyl jasmonate. Organic compounds of interest include the promising antimalarial artemisinin (known as "qing hao su" in China where it has been a folk remedy for centuries) that is produced by Artemisia annua (sweet wormwood) and taxanes used for anticancer therapy that are produced by species of Taxus (yew). The suspension cultures of both species were grown under a variety of dissolved gas conditions in stoppered culture flasks and under conditions of continuous headspace flushing with known gas mixtures. An analysis is presented to show the culture conditions are such that equilibrium between the culture liquid and gas head-space is assured. The growth rate of the cells and their production rates of artemisinin and paclitaxel were determined. These and other parameters are correlated as functions of the gas concentrations. Interdependence of ethylene and methyl jasmonate is also explored with respect to regulation of secondary metabolite formation. Topics: Acetates; Antimalarials; Antineoplastic Agents, Phytogenic; Artemisinins; Carbon Dioxide; Cell Culture Techniques; Cyclopentanes; Drugs, Chinese Herbal; Ethylenes; Humans; Molecular Structure; Oxygen; Oxylipins; Paclitaxel; Plant Cells; Plant Extracts; Plant Growth Regulators; Plants; Sesquiterpenes | 2001 |
6 other study(ies) available for methyl-jasmonate and artemisinin
Article | Year |
---|---|
[Molecular cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase gene from Artemisia annua L.].
The plastidial methylerythritol phosphate(MEP) pathway provides 5-carbon precursors to the biosynthesis of isoprenoid (including artemisinin). 2-C-Methyl-D-erythritol-4-phosphate cytidylyltransferase (MCT) is the third enzyme of the MEP pathway, which catalyzes 2-C-methyl-D-erythritol-4-phosphate to form 4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol. The full-length MCT cDNA sequence (AaMCT) was cloned and characterized for the first time from Artemisia annua L. Analysis of tissue expression pattern revealed that AaMCT was highly expressed in glandular secretory trichome and poorly expressed in leaf, flower, root and stem. AaMCT was found to be a methyl jasmonate (Me JA)-induced genes, the expression of AaMCT was significantly increased after MeJA treatment. Subcellular localization indicated that the GFP protein fused with AaMCT was targeted specifically in chloroplasts. The transgenic plants of Arabidopsis thaliana with AaMCT overexpression exhibited a significantly increase in the content of chlorophyll a, chlorophyll b and carotenoids, demonstrating that AaMCT kinase plays an influential role in isoprenoid biosynthesis. Topics: Acetates; Arabidopsis; Artemisia annua; Artemisinins; Carotenoids; Chlorophyll; Chlorophyll A; Cloning, Molecular; Cyclopentanes; DNA, Complementary; Gene Expression Regulation, Plant; Nucleotidyltransferases; Oxylipins; Plant Proteins; Plants, Genetically Modified | 2016 |
Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor.
Artemisinin is an important drug commonly used in the treatment of malaria as a combination therapy. It is primarily produced by a plant Artemisia annua, however, its supply from plant is significantly lower than its huge demand and therefore alternative in vitro production routes are sought. Hairy root cultivation could be one such alternative production protocol. Agrobacterium rhizogenes was used to induce hairy roots of A. annua. Statistical optimization of media was thereafter attempted to maximize the biomass/artemisinin production. The growth and product formation kinetics and the significant role of O2 in hairy root propagation were established in optimized media. Mass cultivation of hairy roots was, thereafter, attempted in a modified 3-L Stirred Tank Bioreactor (Applikon Dependable Instruments, The Netherlands) using optimized culture conditions. The reactor was suitably modified to obtain profuse growth of hairy roots by segregating and protecting the growing roots from the agitator rotation in the reactor using a perforated Teflon disk. It was possible to produce 18 g biomass L(-1) (on dry weight basis) and 4.63 mg L(-1) of artemisinin in 28 days, which increased to 10.33 mg L(-1) by the addition of elicitor methyl jasmonate. Topics: Acetates; Artemisia annua; Artemisinins; Bioreactors; Culture Techniques; Cyclopentanes; Kinetics; Oxygen; Oxylipins; Plant Roots | 2014 |
The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L.
Plants of Artemisia annua produce artemisinin, a sesquiterpene lactone widely used in malaria treatment. Amorpha-4,11-diene synthase (ADS), a sesquiterpene synthase, and CYP71AV1, a P450 monooxygenase, are two key enzymes of the artemisinin biosynthesis pathway. Accumulation of artemisinin can be induced by the phytohormone jasmonate (JA). Here, we report the characterization of two JA-responsive AP2 family transcription factors--AaERF1 and AaERF2--from A. annua L. Both genes were highly expressed in inflorescences and strongly induced by JA. Yeast one-hybrid and electrophoretic mobility shift assay (EMSA) showed that they were able to bind to the CRTDREHVCBF2 (CBF2) and RAV1AAT (RAA) motifs present in both ADS and CYP71AV1 promoters. Transient expression of either AaERF1 or AaERF2 in tobacco induced the promoter activities of ADS or CYP71AV1, and the transgenic A. annua plants overexpressing either transcription factor showed elevated transcript levels of both ADS and CYP71AV1, resulting in increased accumulation of artemisinin and artemisinic acid. By contrast, the contents of these two metabolites were reduced in the RNAi transgenic lines in which expression of AaERF1 or AaERF2 was suppressed. These results demonstrate that AaERF1 and AaERF2 are two positive regulators of artemisinin biosynthesis and are of great value in genetic engineering of artemisinin production. Topics: Acetates; Artemisia annua; Artemisinins; Biosynthetic Pathways; Cell Nucleus; Cyclopentanes; Gene Expression Regulation, Plant; Oxylipins; Plant Proteins; Promoter Regions, Genetic; Protein Binding; Protein Transport; Transcription Factors | 2012 |
Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures.
Artemisia annua L. is a herb traditionally used for treatment of fevers. The glandular trichomes of this plant accumulate, although at low levels, artemisinin, which is highly effective against malaria. Due to the great importance of this compound, many efforts have been made to improve knowledge on artemisinin production both in plants and in cell cultures. In this study, A. annua suspension cultures were established in order to investigate the effects of methyl jasmonate (MeJA) and miconazole on artemisinin biosynthesis. Twenty-two micro molar MeJA induced a three-fold increase of artemisinin production in around 30 min; while 200 μm miconazole induced a 2.5-fold increase of artemisinin production after 24 h, but had severe effects on cell viability. The influence of these treatments on expression of biosynthetic genes was also investigated. MeJA induced up-regulation of CYP71AV1, while miconazole induced up-regulation of CPR and DBR2. Topics: Acetates; Artemisia annua; Artemisinins; Cell Survival; Cells, Cultured; Cyclopentanes; Gene Expression Regulation, Plant; Miconazole; Molecular Structure; Oxylipins; RNA, Messenger | 2011 |
Chemotype-dependent metabolic response to methyl jasmonate elicitation in Artemisia annua.
Considerable difference in artemisinin and its direct precursors, artemisinic acid and dihydroartemisinic acid, was detected between two chemotypes within the species Artemisia annua (A. annua). These two chemotypes showed differential metabolic response to methyl jasmonate (MeJA) elicitation. Exogenous application of MeJA resulted in an accumulation of dihydroartemisinic acid and artemisinin in Type I plants. In Type II plants, however, artemisinic acid and artemisinin level decreased dramatically under MeJA elicitation. Squalene and other sesquiterpenes, (e.g., caryophyllene, germacrene D), were stimulated by MeJA in both chemotypes. The effect of MeJA elicitation was also studied at the transcription level. Real time RT-PCR analysis showed a coordinated activation of most artemisinin pathway genes by MeJA in Type I plants. The lack of change in cytochrome P450 reductase (CPR) transcript in Type I plants indicates that the rate-limiting enzymes in artemisinin biosynthesis have yet to be identified. Other chemotype-specific electron donor proteins likely exist in A. annua to meet the demand for P450-mediated reactions in MeJA-mediated cellular processes. In Type II plants, mRNA expression patterns of most pathway genes were consistent with the reduced artemisinin level. Intriguingly, the mRNA transcript of aldehyde dehydrogenase1 (ADHL1), an enzyme which catalyzes the oxidation of artemisinic and dihydroartemisinic aldehydes, was upregulated by MeJA. The differential metabolic response to MeJA suggests a chemotype-dependent metabolic flux control towards artemisinin and sterol production in the species A. annua. Topics: Acetates; Aldehyde Dehydrogenase 1 Family; Alkyl and Aryl Transferases; Artemisia annua; Artemisinins; Cyclopentanes; Cytochrome P-450 Enzyme System; Gas Chromatography-Mass Spectrometry; Gene Expression Regulation, Plant; Isoenzymes; NADPH-Ferrihemoprotein Reductase; Oxidoreductases; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Proteins; Polycyclic Sesquiterpenes; Retinal Dehydrogenase; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sesquiterpenes; Sesquiterpenes, Germacrane; Squalene; Terpenes | 2011 |
Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L.
Artemisinin production by hairy roots of Artemisia annua L. was increased 6-fold to 1.8 microg mg(-1) dry wt over 6 days by adding 150 mg chitosan l(-1). The increase was dose-dependent. Similar treatment of hairy roots with methyl jasmonate (0.2 mM) or yeast extract (2 mg ml(-1)) increased artemisinin production to 1.5 and 0.9 microg mg(-1) dry wt, respectively. Topics: Acetates; Artemisia annua; Artemisinins; Chitosan; Cyclopentanes; Oxylipins; Plant Roots; Time Factors | 2007 |