methoxyhydroxyphenylglycol has been researched along with glyceryl 2-arachidonate in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bari, M; Bernardi, G; Centonze, D; Cravatt, BF; De Chiara, V; Fezza, F; Finazzi-Agrò, A; Gasperi, V; Maccarrone, M; Musella, A; Prosperetti, C; Rossi, S | 1 |
Davis, MI; Lovinger, DM; Sheinin, A; Talani, G | 1 |
Bagni, C; Bari, M; Bernardi, G; Centonze, D; De Chiara, V; Maccarrone, M; Musella, A; Rapino, C; Rossi, S | 1 |
Gregg, LC; Hohmann, AG; Jung, KM; Katona, I; Mackie, K; Nyilas, R; Piomelli, D; Spradley, JM; Suplita, RL; Watanabe, M; Zimmer, A | 1 |
Du, H; Kim, J; Kwon, IK | 1 |
5 other study(ies) available for methoxyhydroxyphenylglycol and glyceryl 2-arachidonate
Article | Year |
---|---|
Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum.
Topics: Amidohydrolases; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Corpus Striatum; Down-Regulation; Drug Interactions; Endocannabinoids; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutathione; Glycerides; In Vitro Techniques; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Patch-Clamp Techniques; Polyunsaturated Alkamides; Protein Binding; Receptor, Cannabinoid, CB1; Synaptic Transmission; Time Factors; TRPV Cation Channels | 2008 |
Endocannabinoid- and mGluR5-dependent short-term synaptic depression in an isolated neuron/bouton preparation from the hippocampal CA1 region.
Topics: Animals; Animals, Newborn; Arachidonic Acids; Benzoxazines; Cannabinoid Receptor Modulators; Drug Interactions; Endocannabinoids; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glycerides; Hippocampus; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Methoxyhydroxyphenylglycol; Morpholines; Naphthalenes; Neurons; Patch-Clamp Techniques; Piperidines; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Rimonabant; Synapses; Synapsins | 2008 |
Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA.
Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Corpus Striatum; Dronabinol; Endocannabinoids; Excitatory Amino Acid Antagonists; Fragile X Mental Retardation Protein; Gene Expression Regulation; Glycerides; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Lipoprotein Lipase; Membrane Potentials; Methoxyhydroxyphenylglycol; Mice; Mice, Knockout; Patch-Clamp Techniques; Piperidines; Protein Binding; Pyrazoles; Receptors, Kainic Acid; RNA, Small Cytoplasmic; Statistics, Nonparametric | 2010 |
Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia.
Topics: Analgesia; Analysis of Variance; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cyclohexanones; Dose-Response Relationship, Drug; Electroconvulsive Therapy; Endocannabinoids; Excitatory Amino Acid Antagonists; Glycerides; Lipoprotein Lipase; Male; Methoxyhydroxyphenylglycol; Mice; Microscopy, Immunoelectron; Pain; Periaqueductal Gray; Piperidines; Protease Inhibitors; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Rimonabant; RNA, Messenger; RNA, Small Interfering; Synapses; Tandem Mass Spectrometry | 2012 |
Neuregulin-1 impairs the long-term depression of hippocampal inhibitory synapses by facilitating the degradation of endocannabinoid 2-AG.
Topics: Analysis of Variance; Animals; Animals, Newborn; Anti-Anxiety Agents; Arachidonic Acids; Benzodioxoles; Biophysics; Electric Stimulation; Endocannabinoids; Glycerides; Hippocampus; Inhibitory Postsynaptic Potentials; Long-Term Synaptic Depression; Methoxyhydroxyphenylglycol; Neural Inhibition; Neuregulin-1; Organ Culture Techniques; Patch-Clamp Techniques; Piperidines; Pyrimidines; Rats; Receptor, Cannabinoid, CB1; Synapses | 2013 |