methoprene and citral

methoprene has been researched along with citral* in 2 studies

Other Studies

2 other study(ies) available for methoprene and citral

ArticleYear
The retinoid metabolism of Gammarus fossarum is disrupted by exogenous all-trans retinoic acid, citral, and methoprene but not by the technical formulation of glyphosate.
    Ecotoxicology and environmental safety, 2023, Mar-01, Volume: 252

    Over the last decade, fluctuations of retinoids (RETs), also known as vitamin A and derivatives, have proved to be useful biomarkers to assess the environmental chemical pressure on a wide variety of non-target vertebrates. This use of RET-based biomarkers is of particular interest in the non-target sentinel species Gammarus fossarum in which RETs were shown to influence crucial physiological functions. To study and probe this metabolism in this crustacean model, a UHPLC-MS/MS method was developed to 1) identify and 2) monitor several endogenous RETs in unexposed females throughout their reproductive cycle. Then, females were exposed in controlled conditions to exogenous all-trans retinoic acid (atRA) and citral (CIT), a RA synthesis inhibitor, to simulate an excess or deficiency in RA. Perturbation of vitamin A metabolism by pesticides was further studied in response to methoprene (MET), a juvenile hormone analog as well as glyphosate (GLY). The developed method allowed, for the first time in this model, the identification of RA metabolites (all-trans 4-oxo and 13-cis 4-oxo RA), RA isomers (all-trans and 13-cis RA) as well as retinaldehyde (RALD) isomers (all-trans, 11-cis, and 13-cis RALD) and showed two distinct phases in the reproductive cycle. Retinoic acid successfully increased the tissular concentration of both RA isomers and CIT proved to be efficient at perturbating the conversion from RALD to RA. Methoprene perturbed the ratios between RA isomers whereas GLY had no observed effects on the RET system of G. fossarum females. We were able to discriminate different dynamics of RET perturbations by morphogens (atRA or CIT) or MET which highlights the plausible mediation of RETs in MET-induced disorders. Ultimately, our study shows that RETs are influenced by exposure to MET and strengthen their potential to assess aquatic ecosystem chemical status.

    Topics: Animals; Ecosystem; Female; Glyphosate; Isotretinoin; Methoprene; Retinaldehyde; Retinoids; Tandem Mass Spectrometry; Tretinoin; Vitamin A

2023
Effects of methoprene, its metabolites, and breakdown products on retinoid-activated pathways in transfected cell lines.
    Environmental toxicology and chemistry, 2004, Volume: 23, Issue:5

    Methoprene (isopropyl (2E,4E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate) is an insect juvenile hormone agonist that blocks metamorphosis in some insects. Recent evidence suggests that a metabolite, methoprene acid, activates vertebrate retinoid X receptors (RXRs), and may interfere with retinoic acid-regulated developmental processes. Methoprene, methoxy-methoprene acid, and two major breakdown products were tested for their ability to interfere with retinoid-regulated pathways when using transfected cells. The CV-1 cells were transiently transfected with genes encoding RXRs and response elements attached to luciferase reporters, and retinoic acid-sensitive F9 cells were stably transfected with retinoic acid receptor (RAR)/RXR response elements attached a lacZ reporter (Sil-REM/beta-gal-NEO). Experiments confirmed that methoxy-methoprene acid acted as a ligand for RXRs and was capable of activating transcription through RAR/RXR response elements. However, neither methoprene nor the breakdown products, 7-methoxycitronellal and 7-methoxycitronellic acid, activated transcription in transfected CV-1 or F9 cells. Methoprene and methoxy-methoprene acid may interfere with the conversion of all-trans-retinol and all-trans-retinaldehyde to all-trans-retinoic acid in the F9-derived cell line. Methoprene was as effective as the retinol dehydrogenase inhibitor citral in blocking the retinol-induced transcription of RAR/RXR-regulated reporter genes, whereas methoxy-methoprene acid blocked transcription stimulated by retinaldehyde.

    Topics: Acyclic Monoterpenes; Animals; beta-Galactosidase; Cell Line; Haplorhini; Juvenile Hormones; Luciferases; Metamorphosis, Biological; Methoprene; Mice; Monoterpenes; Receptors, Retinoic Acid; Retinoids; Transcription, Genetic; Transfection

2004