methimazole has been researched along with vinylidene-chloride* in 1 studies
1 other study(ies) available for methimazole and vinylidene-chloride
Article | Year |
---|---|
Nephrotoxicity mechanism of 1,1-dichloroethylene in mice.
Male Swiss OF1 mice were administered orally with a single dose (200 mg/kg) of 1,1-dichloroethylene (DCE). Examination of cryostat kidney sections stained for alkaline phosphatase (APP) revealed damage to about 50% of the proximal tubules at 8 h following DCE administration. Pretreatment with the anionic transport inhibitor probenecid by i.p., (0.75 mmol/kg, 30 min prior to and 10 min and 5 h following DCE administration) and with the gamma-glutamyltranspeptidase (GGT) inactivator acivicin by gavage and i.p. (50 mg/kg, 1 h and 30 min prior to DCE administration) failed to prevent DCE-induced renal toxicity. Pretreatment with the beta-lyase inactivator amino-oxyacetic acid (AOAA) by gavage (100 mg/kg, 30 min prior to and 10 min and 5 h following DCE administration), and with the renal cysteine conjugate S-oxidase inhibitor methimazole by i.p. (40 mg/kg, 30 min prior to DCE administration) reduced the number of damaged tubules by approximately 50 and 60%, respectively in mice treated with DCE. The results suggest that the DCE undergoes biotransformation by NADPH-cytochrome P450 to several reactive species which conjugate with glutathione (GSH). After arriving in the kidneys, the resulting conjugates reach the renal cells by a mechanism which depends on neither GGT, nor on an anionic transport system which is sensitive to probenecid. Once in the cells, the presumed GSH conjugates and/or their derivatives undergo secondary modification by beta-lyase and cysteine conjugate S-oxidase to reactive metabolite(s). Topics: Activins; Administration, Oral; Alkaline Phosphatase; Aminooxyacetic Acid; Animals; Dichloroethylenes; Growth Substances; Inhibins; Kidney Tubules, Proximal; Male; Methimazole; Mice; Mice, Inbred Strains; Probenecid | 1995 |