methimazole has been researched along with thiocyanate* in 3 studies
3 other study(ies) available for methimazole and thiocyanate
Article | Year |
---|---|
Airway peroxidases catalyze nitration of the {beta}2-agonist salbutamol and decrease its pharmacological activity.
β(2)-agonists are the most effective bronchodilators for the rapid relief of asthma symptoms, but for unclear reasons, their effectiveness may be decreased during severe exacerbations. Because peroxidase activity and nitrogen oxides are increased in the asthmatic airway, we examined whether salbutamol, a clinically important β(2)-agonist, is subject to potentially inactivating nitration. When salbutamol was exposed to myeloperoxidase, eosinophil peroxidase or lactoperoxidase in the presence of hydrogen peroxide (H(2)O(2)) and nitrite (NO(2)(-)), both absorption spectroscopy and mass spectrometry indicated formation of a new metabolite with features expected for the nitrated drug. The new metabolites showed an absorption maximum at 410 nm and pK(a) of 6.6 of the phenolic hydroxyl group. In addition to nitrosalbutamol (m/z 285.14), a salbutamol-derived nitrophenol, formed by elimination of the formaldehyde group, was detected (m/z 255.13) by mass spectrometry. It is noteworthy that the latter metabolite was detected in exhaled breath condensates of asthma patients receiving salbutamol but not in unexposed control subjects, indicating the potential for β(2)-agonist nitration to occur in the inflamed airway in vivo. Salbutamol nitration was inhibited in vitro by ascorbate, thiocyanate, and the pharmacological agents methimazole and dapsone. The efficacy of inhibition depended on the nitrating system, with the lactoperoxidase/H(2)O(2)/NO(2)(-) being the most affected. Functionally, nitrated salbutamol showed decreased affinity for β(2)-adrenergic receptors and impaired cAMP synthesis in airway smooth muscle cells compared with the native drug. These results suggest that under inflammatory conditions associated with asthma, phenolic β(2)-agonists may be subject to peroxidase-catalyzed nitration that could potentially diminish their therapeutic efficacy. Topics: Adrenergic beta-2 Receptor Agonists; Albuterol; Ascorbic Acid; Asthma; Breath Tests; Bronchi; Catalysis; Child; Cyclic AMP; Dapsone; Humans; Hydrogen Peroxide; Mass Spectrometry; Methimazole; Nitrites; Peroxidases; Receptors, Adrenergic, beta-2; Thiocyanates | 2011 |
Thiocyanate induces cell necrosis and fibrosis in selenium- and iodine-deficient rat thyroids: a potential experimental model for myxedematous endemic cretinism in central Africa.
Thyroid destruction leading to endemic myxoedematous cretinism is highly prevalent in central Africa, where iodine (I) and selenium (SE) deficiencies as well as thiocyanate (SCN) overload are combined. All three factors have been studied experimentally in the etiology of the disease, but they have never been studied in combination. In a model using rats, we have previously shown that combining I and SE deficiencies increases the sensitivity of the thyroid to necrosis after iodide overload, an event unlikely to occur in the African situation. To develop a model that would more closely fit with the epidemiological findings, we have determined whether an SCN overload would also result in thyroid necrosis as does the I overload. The combination of the three factors increased by 3.5 times the amount of necrotic cells, from 5.5 +/- 0.3% in the I-SE+ thyroids to 18.9 +/- 1.6% in the I-SE-SCN-overloaded ones. Methimazole administration prevented the SCN-induced necrosis. SE- thyroids evolved to fibrosis, whereas SE+ thyroids did not. TGFbeta was prominent in macrophages present in SE- glands. Thyroid destruction in central Africa might therefore originate from the interaction of three factors: I and SE deficiencies by increasing H(2)O(2) accumulation, SE deficiency by decreasing cell defense and promoting fibrosis, and SCN overload by triggering follicular cell necrosis. Topics: Africa, Central; Animals; Antithyroid Agents; Congenital Hypothyroidism; Disease Models, Animal; Endemic Diseases; Female; Fibrosis; Hydrogen Peroxide; Inflammation; Iodine; Macrophages; Methimazole; Myxedema; Necrosis; Perchlorates; Rats; Rats, Wistar; Selenium; Sodium Compounds; Thiocyanates; Thyroid Gland; Transforming Growth Factor beta | 2004 |
Preservation of sodium-dependent iodide transport activity by methimazole and mercaptoethanol in phospholipid vesicles containing thyroid plasma membranes: with evidence of difference in the action of perchlorate and thiocyanate.
The effect of methimazole (MMI) and 2-mercaptoethanol (ME) on I-transport was studied using phospholipid vesicles (P-vesicles) made from porcine thyroid plasma membranes and soybean phospholipids by sonication. 1. When buffer solutions contained either 1 mM MMI or 2 mM ME, I-uptake by P-vesicles in the presence of external Na+ was apparently higher than that in the absence of external Na+. Na+-dependent I- uptake was inhibited by both C1O4- and SCN- added externally. 2. When PM was treated with 4 mM N-ethylmaleimide prior to preparation of P-vesicles, the activity of Na+-dependent I- transport was completely lost even when P-vesicles were incubated in the presence of ME. 3. When neither MMI nor ME was added to buffers, I- uptake in the presence of external Na+ was not at all higher than that in the absence of external Na+. In these instances, however, I- uptake was much higher compared than the baseline uptake in the presence of MMI or ME, and was inhibited by external SCN- and not by C1O4- without relation to external Na+. These data indicate that MMI or ME has two distinct effects on our model system of I- transport. The one is preservation of the Na+-dependent I- transport activity by protecting a sulfhydryl group, and the other is reduction of nonspecific I- binding to P-vesicles. In addition, C1O4- is a more specific inhibitor of thyroid I- transport than SCN-, when non-specific I- oxidation is imperfectly prevented. Topics: Animals; Biological Transport; Cell Membrane; Iodine; Mercaptoethanol; Methimazole; Perchlorates; Phospholipids; Sodium; Sodium Compounds; Thiocyanates; Thyroid Gland | 1989 |