methanethiosulfonate and trimethylethylammonium

methanethiosulfonate has been researched along with trimethylethylammonium* in 4 studies

Other Studies

4 other study(ies) available for methanethiosulfonate and trimethylethylammonium

ArticleYear
Molecular coupling between voltage sensor and pore opening in the Arabidopsis inward rectifier K+ channel KAT1.
    The Journal of general physiology, 2003, Volume: 122, Issue:4

    Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we detected KAT1-gating currents due to the existence of an intrinsic voltage sensor in this channel. The measured gating currents evoked in response to hyperpolarizing voltage steps consist of a very fast (tau = 318 +/- 34 micros at -180 mV) and a slower component (4.5 +/- 0.5 ms at -180 mV) representing charge moved when most channels are closed. The observed gating currents precede in time the ionic currents and they are measurable at voltages (less than or equal to -60) at which the channel open probability is negligible ( approximately 10-4). These two observations, together with the fact that there is a delay in the onset of the ionic currents, indicate that gating charge transits between several closed states before the KAT1 channel opens. To gain insight into the molecular mechanisms that give rise to the gating currents and lead to channel opening, we probed external accessibility of S4 domain residues to methanethiosulfonate-ethyltrimethylammonium (MTSET) in both closed and open cysteine-substituted KAT1 channels. The results demonstrate that the putative voltage-sensing charges of S4 move inward when the KAT1 channels open.

    Topics: Algorithms; Arabidopsis; Arabidopsis Proteins; DNA, Complementary; Electrophysiology; Ion Channel Gating; Mesylates; Patch-Clamp Techniques; Plant Proteins; Potassium Channels; Potassium Channels, Inwardly Rectifying; Quaternary Ammonium Compounds; RNA, Messenger

2003
Identification of amino acid residues contributing to the pore of a P2X receptor.
    The EMBO journal, 1997, Jun-16, Volume: 16, Issue:12

    P2X receptors are ion channels opened by extracellular ATP. The seven subunits currently known are encoded by different genes. It is thought that each subunit has two transmembrane domains, a large extracellular loop, and intracellular N- and C-termini, a topology which is fundamentally different from that of other ligand-gated channels such as nicotinic acetylcholine or glutamate receptors. We used the substituted cysteine accessibility method to identify parts of the molecule that form the ionic pore of the P2X2 receptor. Amino acids preceding and throughout the second hydrophobic domain (316-354) were mutated individually to cysteine, and the DNAs were expressed in HEK293 cells. For three of the 38 residues (I328C, N333C, T336C), currents evoked by ATP were inhibited by extracellular application of methanethiosulfonates of either charge (ethyltrimethylammonium, ethylsulfonate) suggesting that they lie in the outer vestibule of the pore. For two further substitutions (L338C, D349C) only the smaller ethylamine derivative inhibited the current. L338C was accessible to cysteine modification whether or not the channel was opened by ATP, but D349C was inhibited only when ATP was concurrently applied. The results indicate that part of the pore of the P2X receptor is formed by the second hydrophobic domain, and that L338 and D349 are on either side of the channel 'gate'.

    Topics: Adenosine Triphosphate; Binding Sites; Cell Line; Cysteine; Electrophysiology; Ethylamines; Humans; Ion Channel Gating; Ion Channels; Mesylates; Mutagenesis; Quaternary Ammonium Compounds; Receptors, Purinergic P2; Receptors, Purinergic P2X2

1997
Probing the outer vestibule of a sodium channel voltage sensor.
    Biophysical journal, 1997, Volume: 73, Issue:5

    The second and third basic residues of the S4 segment of domain 4 (D4:R2 and D4:R3) of the human skeletal muscle Na+ channel are known to be translocated from a cytoplasmic to an extracellular position during depolarization. Accessibilities of individual S4 residues were assayed by alteration of inactivation kinetics during modification of cysteine mutants by hydrophilic methanethiosulfonate reagents. The voltage dependences of the reaction rates are identical for extracellular application of cationic methanethiosulfonate-ethyltrimethylammonium (MTSET) and anionic methanethiosulfonate-ethylsulfonate (MTSES), suggesting that D4:R3C is situated outside the membrane electric field at depolarized voltages. The absolute rate of R3C modification is 281-fold greater for MTSET than for MTSES, however, suggesting that at depolarized voltages this S4 thiol resides in a negatively charged hydrophilic crevice. The two hydrophobic residues between D4:R2C and D4:R3C in the primary sequence (L1452 and A1453) are not externally exposed at any voltage. An alpha-helical representation of D4/S4 shows that the basic residues D4:R2 and D4:R3 are on the face opposite that of L1452 and A1453. We propose that in the depolarized conformation, the hydrophobic face of this portion of D4/S4 remains in contact with a hydrophobic region of the extracellular vestibule of the S4 channel.

    Topics: Alkanesulfonates; Electric Stimulation; Electrophysiology; Humans; Ion Channel Gating; Kinetics; Mesylates; Models, Molecular; Muscle, Skeletal; Mutagenesis, Site-Directed; Protein Structure, Secondary; Quaternary Ammonium Compounds; Recombinant Proteins; Sodium Channels

1997
Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method.
    Neuron, 1995, Volume: 14, Issue:4

    The binding site of the dopamine D2 receptor, like that of other homologous G protein-coupled receptors, is contained within a water-accessible crevice formed among its seven membrane-spanning segments. We have developed a method to map systematically all the residues forming the surface of this binding-site crevice, and we have applied this method to the third membrane-spanning segment (M3). We mutated, one at a time, 23 residues in and flanking M3 to cysteine and expressed the mutant receptors heterologously. Ten of these mutants reacted with charged, hydrophilic, lipophobic, sulfhydryl-specific reagents, added extracellularly, and were protected from reaction by a reversible dopamine antagonist. Thus, the side chains of these residues are exposed in the binding-site crevice, which like M3 extends from the extracellular to the intracellular side of the membrane. The pattern of exposure is consistent with a short loop followed by six turns of an alpha helix.

    Topics: Binding Sites; Cell Line; Cysteine; Embryo, Mammalian; Ethyl Methanesulfonate; Humans; Indicators and Reagents; Kidney; Mesylates; Mutagenesis, Site-Directed; Peptide Mapping; Protein Structure, Secondary; Quaternary Ammonium Compounds; Receptors, Dopamine D2; Transfection

1995