methampicillin has been researched along with ethylene* in 2 studies
2 other study(ies) available for methampicillin and ethylene
Article | Year |
---|---|
The brassinosteroid signaling component SlBZR1 promotes tomato fruit ripening and carotenoid accumulation.
The plant hormone ethylene is essential for climacteric fruit ripening, although it is unclear how other phytohormones and their interactions with ethylene might affect fruit ripening. Here, we explored how brassinosteroids (BRs) regulate fruit ripening in tomato (Solanum lycopersicum) and how they interact with ethylene. Exogenous BR treatment and increased endogenous BR contents in tomato plants overexpressing the BR biosynthetic gene SlCYP90B3 promoted ethylene production and fruit ripening. Genetic analysis indicated that the BR signaling regulators Brassinazole-resistant1 (SlBZR1) and BRI1-EMS-suppressor1 (SlBES1) act redundantly in fruit softening. Knocking out SlBZR1 inhibited ripening through transcriptome reprogramming at the onset of ripening. Combined transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing identified 73 SlBZR1-repressed targets and 203 SlBZR1-induced targets involving major ripening-related genes, suggesting that SlBZR1 positively regulates tomato fruit ripening. SlBZR1 directly targeted several ethylene and carotenoid biosynthetic genes to contribute to the ethylene burst and carotenoid accumulation to ensure normal ripening and quality formation. Furthermore, knock-out of Brassinosteroid-insensitive2 (SlBIN2), a negative regulator of BR signaling upstream of SlBZR1, promoted fruit ripening and carotenoid accumulation. Taken together, our results highlight the role of SlBZR1 as a master regulator of tomato fruit ripening with potential for tomato quality improvement and carotenoid biofortification. Topics: Brassinosteroids; Carotenoids; Ethylenes; Fruit; Gene Expression Regulation, Plant; Plant Growth Regulators; Plant Proteins; Solanum lycopersicum | 2023 |
Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation.
Upland cotton (Gossypium hirsutum) produces the most widely used natural fibers, yet the regulatory mechanisms governing fiber cell elongation are not well understood. Through sequencing of a cotton fiber cDNA library and subsequent microarray analysis, we found that ethylene biosynthesis is one of the most significantly upregulated biochemical pathways during fiber elongation. The 1-Aminocyclopropane-1-Carboxylic Acid Oxidase1-3 (ACO1-3) genes responsible for ethylene production were expressed at significantly higher levels during this growth stage. The amount of ethylene released from cultured ovules correlated with ACO expression and the rate of fiber growth. Exogenously applied ethylene promoted robust fiber cell expansion, whereas its biosynthetic inhibitor l-(2-aminoethoxyvinyl)-glycine (AVG) specifically suppressed fiber growth. The brassinosteroid (BR) biosynthetic pathway was modestly upregulated during this growth stage, and treatment with BR or its biosynthetic inhibitor brassinazole (BRZ) also promoted or inhibited, respectively, fiber growth. However, the effect of ethylene treatment was much stronger than that of BR, and the inhibitory effect of BRZ on fiber cells could be overcome by ethylene, but the AVG effect was much less reversed by BR. These results indicate that ethylene plays a major role in promoting cotton fiber elongation. Furthermore, ethylene may promote cell elongation by increasing the expression of sucrose synthase, tubulin, and expansin genes. Topics: Amino Acids, Cyclic; Cell Enlargement; Cell Wall; Cytoskeleton; Ethylenes; Flowers; Gene Expression Profiling; Glycine; Gossypium; Molecular Sequence Data; Oligonucleotide Array Sequence Analysis; Triazoles; Up-Regulation | 2006 |