metformin has been researched along with vidarabine in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 6 (85.71) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Hamdi, S; Huguet, F; Laporte, F; Oksman, F | 1 |
Barnett, D; Burger, C; O'Riordan, KJ; Osting, SM; Potter, WB; Roopra, A; Wagoner, M | 1 |
Banerjee, A; Flynt, L; Ghosh, S; Mellema, M; Panettieri, RA; Shore, SA; Williams, E; Zhu, M | 1 |
Kinoshita, K; Kohno, Y; Minagawa, M; Takatani, R; Takatani, T | 1 |
7 other study(ies) available for metformin and vidarabine
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Auto-immune neutropenia associated with metformin in a patient with splenic marginal zone lymphoma.
Topics: Aged; Antineoplastic Agents; Autoimmune Diseases; Granulocytes; Humans; Hypoglycemic Agents; Leukocyte Count; Lymphoma, B-Cell, Marginal Zone; Male; Metformin; Neutropenia; Splenic Neoplasms; Vidarabine | 2008 |
Metabolic regulation of neuronal plasticity by the energy sensor AMPK.
Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Antimetabolites; Blotting, Western; Deoxyglucose; Energy Metabolism; Enzyme Activation; Hippocampus; Hypoglycemic Agents; In Vitro Techniques; Intracellular Signaling Peptides and Proteins; Long-Term Potentiation; Metformin; Mice; Mice, Inbred BALB C; Microscopy, Fluorescence; Neuronal Plasticity; Protein Serine-Threonine Kinases; Pyrazoles; Pyrimidines; Ribonucleotides; Signal Transduction; TOR Serine-Threonine Kinases; Vidarabine | 2010 |
Anti-inflammatory effects of thiazolidinediones in human airway smooth muscle cells.
Topics: Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Anilides; Anti-Inflammatory Agents; Antimetabolites; Asthma; Cells, Cultured; Chromans; Cytokines; Enzyme Activators; Enzyme Inhibitors; Gene Knockdown Techniques; Humans; Hypoglycemic Agents; Inflammation Mediators; Metformin; Myocytes, Smooth Muscle; PPAR gamma; Pyrazoles; Pyrimidines; Respiratory System; Ribonucleotides; Rosiglitazone; Thiazolidinediones; Troglitazone; Vidarabine | 2011 |
AMP-activated protein kinase attenuates Wnt/β-catenin signaling in human osteoblastic Saos-2 cells.
Topics: AMP-Activated Protein Kinases; Animals; beta Catenin; Cell Line; Culture Media, Conditioned; Genes, Reporter; Humans; Lithium Chloride; Luciferases, Firefly; Metformin; Mice; Osteoblasts; Phosphorylation; Protein Processing, Post-Translational; Signal Transduction; T Cell Transcription Factor 1; Transcriptional Activation; Vidarabine; Wnt Proteins; Wnt3 Protein; Wnt3A Protein | 2011 |