metallothionein and dopamine-quinone

metallothionein has been researched along with dopamine-quinone* in 2 studies

Other Studies

2 other study(ies) available for metallothionein and dopamine-quinone

ArticleYear
Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity.
    Glia, 2011, Volume: 59, Issue:3

    Our previous studies demonstrated the involvement of quinone formation in dopaminergic neuron dysfunction in the L-DOPA-treated parkinsonian model and in methamphetamine (METH) neurotoxicity. We further reported that the cysteine-rich metal-binding metallothionein (MT) family of proteins protects dopaminergic neurons against dopamine (DA) quinone neurotoxicity by its quinone-quenching property. The aim of this study was to examine MT induction in astrocytes in response to excess DA and the potential neuroprotective effects of astrocyte-derived MTs against DA quinone toxicity. DA exposure significantly upregulated MT-1/-2 in cultured striatal astrocytes, but not in mesencephalic neurons. This DA-induced MT upregulation in astrocytes was blocked by treatment with a DA-transporter (DAT) inhibitor, but not by DA-receptor antagonists. Expression of nuclear factor erythroid 2-related factor (Nrf2) and its binding activity to antioxidant response element of MT-1 gene were significantly increased in the astrocytes after DA exposure. Nuclear translocation of Nrf2 was suppressed by the DAT inhibitor. Quinone formation and reduction of mesencephalic DA neurons after DA exposure were ameliorated by preincubation with conditioned media from DA-treated astrocytes. These protective effects were abrogated by MT-1/-2-specific antibody. Adding exogenous MT-1 to glial conditioned media also showed similar neuroprotective effects. Furthermore, MT-1/-2 expression was markedly elevated specifically in reactive astrocytes in the striatum of L-DOPA-treated hemi-parkinsonian mice or METH-injected mice. These results suggested that excess DA taken up by astrocytes via DAT upregulates MT-1/-2 expression specifically in astrocytes, and that MTs or related molecules secreted specifically by astrocytes protect dopaminergic neurons from damage through quinone quenching and/or scavenging of free radicals.

    Topics: Animals; Astrocytes; Cells, Cultured; Coculture Techniques; Dopamine; Free Radical Scavengers; Metallothionein; Neurons; Neuroprotective Agents; Rats; Rats, Sprague-Dawley

2011
Protective effects of metallothionein against dopamine quinone-induced dopaminergic neurotoxicity.
    FEBS letters, 2007, Oct-16, Volume: 581, Issue:25

    Dopamine (DA) quinone as DA neuron-specific oxidative stress conjugates with cysteine residues in functional proteins to form quinoproteins. Here, we examined the effects of cysteine-rich metal-binding proteins, metallothionein (MT)-1 and -2, on DA quinone-induced neurotoxicity. MT quenched DA semiquinones in vitro. In dopaminergic cells, DA exposure increased quinoproteins and decreased cell viability; these were ameliorated by pretreatment with MT-inducer zinc. Repeated L-DOPA administration markedly elevated striatal quinoprotein levels and reduced the DA nerve terminals specifically on the lesioned side in MT-knockout parkinsonian mice, but not in wild-type mice. Our results suggested that intrinsic MT protects against L-DOPA-induced DA quinone neurotoxicity in parkinsonian mice by its quinone-quenching property.

    Topics: Animals; Cell Line; Cytoprotection; Dopamine; Dopamine Agents; Levodopa; Metallothionein; Mice; Mice, Knockout; Oxidopamine; Parkinson Disease, Secondary; RNA, Messenger; Zinc

2007