metallothionein has been researched along with cadmium-telluride* in 6 studies
6 other study(ies) available for metallothionein and cadmium-telluride
Article | Year |
---|---|
Changes in metallothionein transcription levels in the mussel Mytilus galloprovincialis exposed to CdTe quantum dots.
Quantum dots (QDs) are a class of engineered nanoparticles (ENPs) with several biomedical, industrial and commercial applications. However, their metabolism and detoxification process in aquatic invertebrates and environmental health hazards remain unclear. This study investigate the transcriptional changes of metallothioneins (MTs) isoforms (mt10IIIa and mt20IV) induced by CdTe QDs, in comparison with its dissolved counterpart, in the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and to the same Cd concentration (10 µg Cd L Topics: Animals; Cadmium Compounds; Gills; Metallothionein; Mytilus; Oxidative Stress; Protein Isoforms; Quantum Dots; Tellurium; Transcription, Genetic; Water Pollutants, Chemical | 2018 |
Preliminary analysis of the interactions between CdTe quantum dots and human metallothionein.
Metallothionein (MT) plays the important role in the detoxification of heavy metals, protection against oxidative compounds and as a prognostic marker in the development of tumors. It is important to find selective, stable and sensitive tools and probes to evaluate the presence of MT in biological fluids or tissues. QDs linked with ligands such as peptides or small molecules are a promising tool for selective, fast, and sensitive tagging and imaging in medicine. In previous findings, the authors proved the possibility of interaction with QDs (particularly with CdTe) and analyzed the stability of the formed complexes between CdTe and MT during incubation over time. Following that, an initial analysis of the interactions between CdTe quantum dots (QDs) and human metallothionein (MT) was performed. Complexes of mercaptosuccinic acid-covered CdTe QDs + MT were investigated using fluorescence intensity changes along a timeline, quenching analysis, stability interpretation based on zeta potential, and quenching intensity. Based on the preliminary results, it appears as though the possible interactions depend on the size of the CdTe QDs. Additionally, the formation of complexes between CdTe and human MT likely depends mostly on structural changes and conformational reorganization rather than on electrostatic interactions. Both types of interactions are responsible for complex creation and stabilization. Topics: Cadmium Compounds; Fluorescence; Humans; Metallothionein; Particle Size; Quantum Dots; Spectrometry, Fluorescence; Surface Properties; Tellurium | 2018 |
Kinetic analysis of human metallothionein and CdTe quantum dot complexes using fluorescence and voltammetry techniques.
Thanks to quantum dots' (QDs) properties, they can be used as selective and sensitive biomarkers in molecular imaging. In a previous paper, we confirmed the possibility of interaction between mercaptosuccinic acid-capped cadmium telluride QDs (MSA-CdTe) and human metallothionein (MT). The aim of this study was to expand on our previous research with an evaluation of the stability of the formed complexes between human MT and four CdTe compounds of the following sizes: 3.4nm (blue QDs), 3.8nm (green QDs), 4.5nm (yellow QDs), and 5.2nm (red QDs). Complexes were evaluated over time using fluorescence intensity and differential pulse voltammetry. Differences between the voltammograms obtained for standard solutions and for CdTe+MT show that complexes were formed. An increase in fluorescence intensity was observed for blue (Δ%≈40 for t=1→120min) and red (Δ%≈30 for t=1→120min) CdTe-MT complexes than CdTe alone, whereas green and yellow CdTe-MT complexes had a lower fluorescence intensity than CdTe alone. A stronger time dependence of the mercaptosuccinic acid (MSA) peak height on the timeline and differences in the MSA peak shape (in CdTe, and CdTe+MT complexes) were also observed by voltammetry. Authors noticed a decrease in the Cat2 signal of the red and green CdTe+MT complexes at the time of conjugation. Our results reveal that the size of QDs has an impact on the interaction between CdTe and human MT, as well as on the stability of complexes formed during these interactions. The bioconjugates' stability was also found to depend on the time of interaction. Topics: Cadmium Compounds; Electrochemical Techniques; Fluorescence; Humans; Kinetics; Metallothionein; Protein Binding; Quantum Dots; Spectrometry, Fluorescence; Tellurium; Time Factors | 2017 |
Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals.
A complete understanding of the toxicological behavior of quantum dots (QDs) in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd(2+)) and hydroxyl radicals (·OH) in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg) of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping · OH with salicylic acid (SA) as 2,3-dihydroxybenzoic acid (DHBA) and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd(2+) from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd(2+) and ·OH, and could recover after a period of time. The Cd(2+) and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs. Topics: Animals; Cadmium; Cadmium Compounds; Chromatography, High Pressure Liquid; Humans; Hydroxyl Radical; Immunohistochemistry; Ions; Kidney; Liver; Male; Metallothionein; Mice, Inbred ICR; Quantum Dots; Tellurium; Time Factors | 2016 |
3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein.
Currently, metallothioneins (MTs) are extensively investigated as the molecular biomarkers and the significant positive association of the MT amount was observed in tumorous versus healthy tissue of various types of malignant tumors, including head and neck cancer. Thus, we proposed a biosensor with fluorescence detection, comprising paramagnetic nanoparticles (nanomaghemite core with gold nanoparticles containing shell) for the magnetic separation of MT, based on affinity of its sulfhydryl groups toward gold. Biosensor was crafted from PDMS combined with technology of 3D printing and contained reservoir with volume of 50 μL linked to input (sample/detection components and washing/immunobuffer) and output (waste). For the immunolabeling of immobilized MT anti-MT antibodies conjugated to CdTe quantum dots through synthetic heptapeptide were employed. After optimization of fundamental conditions of the immunolabeling (120 min, 20°C, and 1250 rpm) we performed it on a surface of paramagnetic nanoparticles in the biosensor reservoir, with evaluation of fluorescence of quantum dots (λexc 400 nm, and λem 555 nm). The developed biosensor was applied for quantification of MT in cell lines derived from spinocellular carcinoma (cell line 122P-N) and fibroblasts (122P-F) and levels of the biomarker were found to be about 90 nM in tumor cells and 37 nM in fibroblasts. The proposed system is able to work with low volumes (< 100 μL), with low acquisition costs and high portability. Topics: Biosensing Techniques; Cadmium Compounds; Cell Line, Tumor; Dimethylpolysiloxanes; Fluorescence; Gold; Humans; Magnetics; Metal Nanoparticles; Metallothionein; Neoplasms; Printing, Three-Dimensional; Quantum Dots; Tellurium | 2015 |
Effects of cadmium telluride quantum dots on cadmium bioaccumulation and metallothionein production to the freshwater mussel, Elliptio complanata.
Nanotechnology has gained increasing commercial attention over recent years and its use has raised concerns about its potential release in the environment. The purpose of this study was to determine the size distribution of CdTe in freshwater, bioavailability and potential toxic effects of cadmium telluride quantum dots (CdTe QD) to the freshwater mussel Elliptio complanata. Mussels were exposed to increasing concentrations (0 to 8 mg Cd L(-1)) of CdTe and 0.5 mg/L CdSO4 for 24 h at 15 degrees C to examine the initial uptake and toxic effects of Cd from CdTe QDs and dissolved CdSO4. After the exposure period, Cd bioaccumulation in the gills, digestive gland and gonad tissues and metallothionein (MT) levels were determined. The results revealed that about 80% of Cd was retained by a 450 nm pore filter (aggregates) and that 14% of the Cd was in the dissolved phase (i.e., eluted through a 1 kDa ultrafiltration membrane) which suggested that uncoated CdTe QDs were not stable in freshwater. In mussels, Cd was accumulated principally by the gills and digestive gland and the bioaccumulation factors of Cd from CdTe were similar to that of dissolved Cd. Indeed, tissue-levels of Cd were below the proportion of dissolved Cd from CdTe which suggests that Cd rather comes from the dissociation of Cd from the ingested QDs than from the internalization of the QDs in mussel tissues. The levels of MT were induced in both the digestive gland and gonad but were readily decreased in the gills by both CdTe and CdSO4. The observed decrease in the metallic form of MT might result from the oxidative stress by CdTe and dissolved Cd. In conclusion, uncoated CdTe QD in freshwater leads to aggregates and a dissolved component of Cd where the latter explained the contribution of the observed accumulation pattern in mussel tissues and effects on MT levels in mussels. Topics: Animals; Biological Availability; Bivalvia; Body Burden; Cadmium Compounds; Digestive System; Dose-Response Relationship, Drug; Fresh Water; Gills; Gonads; Metallothionein; Oxidative Stress; Quantum Dots; Solubility; Sulfates; Tellurium; Up-Regulation; Water Pollutants, Chemical | 2009 |