mesosulfuron-methyl has been researched along with diflufenican* in 2 studies
2 other study(ies) available for mesosulfuron-methyl and diflufenican
Article | Year |
---|---|
Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium.
The aim of this study was to determine the effect of three active substances, diflufenican, mesosulfuron-methyl and iodosulfuron-methyl-sodium, applied in combination, on soil microbial counts, the structure of soil microbial communities, activity of soil enzymes and their resistance to the tested product, the biochemical indicator of soil fertility, and spring wheat yield. Soil samples with the granulometric composition of sandy loam with pHKCl 7.0 were used in a pot experiment. The herbicide was applied to soil at seven doses: 0.057 (dose recommended by the manufacturer), 1.140, 2.280, 4.560, 9.120, 18.240 and 36.480 mg kg(-1) soil DM. Uncontaminated soil served as the control treatment. It was found that a mixture of the tested active substances increased the counts of total oligotrophic bacteria and spore-forming oligotrophic bacteria, organotrophic bacteria and actinomycetes, decreased the counts of Azotobacter and fungi, and modified the structure of soil microbial communities. The highest values of the colony development (CD) index and the ecophysiological (EP) index were observed in fungi and organotrophic bacteria, respectively. The herbicide applied in the recommended dose stimulated the activity of catalase, urease and acid phosphatase, but it had no effect on the activity of dehydrogenases, alkaline phosphatase, arylsulfatase and β-glucosidase. The highest dose of the analyzed substances (36.480 mg kg(-1)) significantly inhibited the activity of dehydrogenases, acid phosphatase, alkaline phosphatase and arylsulfatase. The values of the biochemical soil fertility indicator (BA21) decreased in response to high doses of the herbicide. Urease was most resistant and dehydrogenases were least resistant to soil contamination with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. The analyzed herbicide had an adverse influence on spring wheat yield, and doses of 18.240 and 36.480 mg kg(-1) led to eventual death of plants. Topics: Actinobacteria; Arylsulfatases; Bacteria; Biomass; Fungi; Herbicides; Microbial Consortia; Niacinamide; Soil; Soil Microbiology; Soil Pollutants; Sulfonamides; Sulfonylurea Compounds; Triticum; Urease | 2015 |
Multiresidue method for the determination of 13 pesticides in three environmental matrices: water, sediments and fish muscle.
Pesticides residues in aquatic ecosystems are an environmental concern which requires efficient analytical methods. In this study, we proposed a generic method for the quantification of 13 pesticides (azoxystrobin, clomazone, diflufenican, dimethachlor, carbendazim, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop and thifensulfuron-methyl) in three environmental matrices. Pesticides from water were extracted using a solid phase extraction system and a single solid-liquid extraction method was optimized for sediment and fish muscle, followed by a unique analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Limits of quantification were below 5 ng L(-1) for water (except for fluroxypyr and iprodion) and ranged between 0.1 ng g(-1) and 57.7 ng g(-1) for sediments and regarding fish, were below 1 ng g(-1) for 8 molecules and were determined between 5 and 49 ng g(-1) for the 5 other compounds. This method was finally used as a new routine practice for environmental research. Topics: Acetamides; Aminoimidazole Carboxamide; Animals; Benzimidazoles; Carbamates; Chemical Fractionation; Chromatography, Liquid; Environmental Monitoring; Fishes; Geologic Sediments; Hydantoins; Isoxazoles; Methacrylates; Muscles; Naphthalenes; Niacinamide; Oxazolidinones; Pesticide Residues; Pesticides; Phenylurea Compounds; Propionates; Pyrimidines; Quinoxalines; Reproducibility of Results; Solid Phase Extraction; Strobilurins; Sulfonylurea Compounds; Tandem Mass Spectrometry; Thiophenes; Water Pollutants, Chemical | 2011 |