mesna has been researched along with 2-bromoethanesulfonic-acid* in 7 studies
7 other study(ies) available for mesna and 2-bromoethanesulfonic-acid
Article | Year |
---|---|
Synchronous response in methanogenesis and anaerobic degradation of pentachlorophenol in flooded soil.
Methanogenesis is commonly mass-produced under anaerobic conditions and serves as a major terminal electron accepting process driving the degradation of organic biomass. In this study, a cofactor of methanogenesis (coenzyme M, CoM) and a classic methanogensis inhibitor (2-bromoethanesulfonate, BES) were added at different concentrations to investigate how methanogenesis would affect PCP degradation in flooded soil. Strikingly, the processes of methanogenesis and PCP degradation were simultaneously promoted with CoM, or inhibited with BES, significantly (pā<ā 0.05). High-throughput sequencing for soil bacterial and archaeal community structures revealed that members of Desulfitobacterium, Dethiobacter, Sedimentibacter, Bacillus and Methanosarcina might act as the core functional groups jointly perform PCP degradation in flooded soil, possibly through assisting microbial mediated dechlorination in direct organohalide-respiration, and/or indirect co-metabolization in complex anaerobic soil conditions. This study implied an underlying synergistic coupling between methanogenesis and dechlorination, and provided insights into a novel consideration with respect to coordinating methanogenesis while promoting anaerobic degradation of PCP for complex polluted soil environment, which is necessary for the improved all-win remediation. Topics: Alkanesulfonic Acids; Anaerobiosis; Archaea; Bacillus; Biodegradation, Environmental; Chlorine; Clostridiales; Desulfitobacterium; Firmicutes; Floods; Hydrogen-Ion Concentration; Mesna; Methane; Methanosarcina; Pentachlorophenol; Soil; Soil Microbiology; Soil Pollutants; Time Factors | 2019 |
Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate.
Electron allocation through the suppression or the stimulation of methanogenesis is critical for microbial electrolysis cells (MECs) to produce the desired target product (e.g., CH Topics: Acetates; Alkanesulfonic Acids; Bacteria; Biofuels; Electrolysis; Mesna; Methane | 2019 |
Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.
2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation. Topics: Agriculture; Alkanesulfonic Acids; Biomass; Dose-Response Relationship, Drug; Mesna; Methane; Oryza; Oxidoreductases; Polymerase Chain Reaction; Soil; Soil Microbiology | 2015 |
Mechanism of inhibition of aliphatic epoxide carboxylation by the coenzyme M analog 2-bromoethanesulfonate.
The bacterial metabolism of epoxypropane formed from propylene oxidation uses the atypical cofactor coenzyme M (CoM, 2-mercaptoethanesulfonate) as the nucleophile for epoxide ring opening and as a carrier of intermediates that undergo dehydrogenation, reductive cleavage, and carboxylation to form acetoacetate in a three-step metabolic pathway. 2-Ketopropyl-CoM carboxylase/oxidoreductase (2-KPCC), the terminal enzyme of this pathway, is the only known member of the disulfide oxidoreductase family of enzymes that is a carboxylase. In the present work, the CoM analog 2-bromoethanesulfonate (BES) is shown to be a reversible inhibitor of 2-KPCC and hydroxypropyl-CoM dehydrogenase but not of epoxyalkane:CoM transferase. Further investigations revealed that BES is a time-dependent inactivator of dithiothreitol-reduced 2-KPCC, where the redox active cysteines are in the free thiol forms. BES did not inactivate air-oxidized 2-KPCC, where the redox active cysteine pair is in the disulfide form. The inactivation of 2-KPCC exhibited saturation kinetics, and CoM slowed the rate of inactivation. Mass spectral analysis demonstrated that BES inactivation of reduced 2-KPCC occurs with covalent modification of the interchange thiol (Cys(82)) by a group with a molecular mass identical to that of ethylsulfonate. The flavin thiol Cys(87) was not alkylated by BES under reducing conditions, and no amino acid residues were modified by BES in the oxidized enzyme. The UV-visible spectrum of BES-modifed 2-KPCC showed the characteristic charge transfer absorbance expected with alkylation at Cys(82). These results identify BES as a reactive CoM analog that specifically alkylates the interchange thiol that facilitates thioether bond cleavage and enolacetone formation during catalysis. Topics: Alkanesulfonic Acids; Chromatography, Liquid; Epoxy Compounds; Ketone Oxidoreductases; Mass Spectrometry; Mesna; NADP | 2010 |
Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues.
Methyl-coenzyme M reductase (MCR) catalyses the reduction of methyl-coenzyme M (CH(3)-S-CoM) with coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. It contains the nickel porphyrinoid F(430) as prosthetic group which has to be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-derived EPR signal MCR-red1. We report here on experiments with methyl-coenzyme M analogues showing how they affect the activity and the MCR-red1 signal of MCR from Methanothermobacter marburgensis. Ethyl-coenzyme M was the only methyl-coenzyme M analogue tested that was used by MCR as a substrate. Ethyl-coenzyme M was reduced to ethane (apparent K(M)=20 mM; apparent V(max)=0.1 U/mg) with a catalytic efficiency of less than 1% of that of methyl-coenzyme M reduction to methane (apparent K(M)=5 mM; apparent V(max)=30 U/mg). Propyl-coenzyme M (apparent K(i)=2 mM) and allyl-coenzyme M (apparent K(i)=0.1 mM) were reversible inhibitors. 2-Bromoethanesulfonate ([I](0.5 V)=2 micro M), cyano-coenzyme M ([I](0.5 V)=0.2 mM), 3-bromopropionate ([I](0.5 V)=3 mM), seleno-coenzyme M ([I](0.5 V)=6 mM) and trifluoromethyl-coenzyme M ([I](0.5 V)=6 mM) irreversibly inhibited the enzyme. In their presence the MRC-red1 signal was quenched, indicating the oxidation of Ni(I) to Ni(II). The rate of oxidation increased over 10-fold in the presence of coenzyme B, indicating that the Ni(I) reactivity was increased in the presence of coenzyme B. Enzyme inactivated in the presence of coenzyme B showed an isotropic signal characteristic of a radical that is spin coupled with one hydrogen nucleus. The coupling was also observed in D(2)O. The signal was abolished upon exposure of the enzyme to O(2). 3-Bromopropanesulfonate ([I](0.5 V)=0.1 micro M), 3-iodopropanesulfonate ([I](0.5 V)=1 micro M), and 4-bromobutyrate also inactivated MCR. In their presence the EPR signal of MCR-red1 was converted into a Ni-based EPR signal MCR-BPS that resembles in line shape the MCR-ox1 signal. The signal was quenched by O(2). 2-Bromoethanesulfonate and 3-bromopropanesulfonate, which both rapidly reacted with Ni(I) of MRC-red1, did not react with the Ni of MCR-ox1 and MCR-BPS. The Ni-based EPR spectra of both inactive forms were not affected in the presence of high concentrations of these two potent inhibitors. Topics: Alkanesulfonic Acids; Binding Sites; Kinetics; Mesna; Methanobacteriaceae; Models, Chemical; Molecular Structure; Nickel; Oxidation-Reduction; Oxidoreductases; Substrate Specificity | 2004 |
Characterization of bromoethanesulfonate-resistant mutants of Methanococcus voltae: evidence of a coenzyme M transport system.
Mutants of Methanococcus voltae were isolated that were resistant to the coenzyme M (CoM; 2-mercaptoethanesulfonic acid) analog 2-bromoethanesulfonic acid (BES). The mutants displayed a reduced ability to accumulate [35S]BES relative to the sensitive parental strain. BES inhibited methane production from CH3-S-CoM in cell extracts prepared from wild-type sensitive or resistant strains. BES uptake required the presence of both CO2 and H2 and was inhibited by N-ethylmaleimide and several reagents that are known to disrupt energy metabolism. The mutants showed normal uptake of isoleucine and were not cross-resistant to either azaserine or 5-methyltryptophan and, thus, were neither defective in general energy-dependent substrate transport nor envelope permeability. Both HS-CoM and CH3-S-CoM prevented the uptake of BES and protected cells from inhibition by it. We propose that M. voltae has an energy-dependent, carrier-mediated uptake system for HS-CoM and CH3-S-CoM which can also mediate uptake of BES. Topics: Alkanesulfonates; Alkanesulfonic Acids; Amino Acids; Biological Transport; Drug Resistance, Microbial; Ethylmaleimide; Euryarchaeota; Mercaptoethanol; Mesna; Mutation; Oxidoreductases; Species Specificity | 1987 |
Reversal of 2-bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp.
2-Bromoethanesulfonate (BES) inhibition of methanogenesis from methanol by resting-cell suspensions or cell extracts of Methanosarcina was reversed by coenzyme M. BES inhibition of methylcoenzyme M methylreductase activity in cell-free extracts was reversed by methylcoenzyme M but not by coenzyme M. Methanol/coenzyme M methyltransferase activity was not inhibited by 10 microM BES. Inhibition of methylreductase by BES and 3-bromopropionate was competitive with methylcoenzyme M, but inhibition by 2-bromoethanol exhibited mixed kinetics. The Ki values for the inhibitors in cell-free extracts were similar to the concentrations which inhibited intact cells. BES-resistant mutants of strain 227 were apparently permeability mutants because in vitro assays showed that mutant and parent strain methylreductases were equally sensitive to BES. Topics: Alkanesulfonates; Alkanesulfonic Acids; Euryarchaeota; Kinetics; Mercaptoethanol; Mesna; Methanol; Methyltransferases; Oxidoreductases; Structure-Activity Relationship | 1983 |