mercaptopurine has been researched along with 5-methyl-2-pyrimidinone* in 1 studies
1 other study(ies) available for mercaptopurine and 5-methyl-2-pyrimidinone
Article | Year |
---|---|
The fidelity of replication of the three-base-pair set adenine/thymine, hypoxanthine/cytosine and 6-thiopurine/5-methyl-2-pyrimidinone with T7 DNA polymerase.
With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs T(H) (5-methyl-2-pyrimidinone)/H(S) (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3'-->5' exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3'-->5' exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3'-->5' exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3'-->5' exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair T(H)/H(S) was 0.1 times that of A/T for T(H) in the template and 0.01 times that of A/T for H(S) in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or T(H) opposite a template hypoxanthine, 2x10(-6); H(S) opposite a template cytosine, <3x10(-4). The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template T(H), showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication. Topics: Adenine; Base Pairing; Cytosine; DNA Replication; DNA-Directed DNA Polymerase; Hypoxanthine; Kinetics; Mercaptopurine; Models, Genetic; Purines; Pyrimidinones; Research Design; Sensitivity and Specificity; Thymine | 2004 |