menaquinone-6 and 2-succinyl-6-hydroxycyclohexa-2-4-diene-1-carboxylic-acid

menaquinone-6 has been researched along with 2-succinyl-6-hydroxycyclohexa-2-4-diene-1-carboxylic-acid* in 2 studies

Other Studies

2 other study(ies) available for menaquinone-6 and 2-succinyl-6-hydroxycyclohexa-2-4-diene-1-carboxylic-acid

ArticleYear
Identification and characterization of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli.
    Biochemistry, 2008, Mar-18, Volume: 47, Issue:11

    Menaquinone is a lipid-soluble molecule that plays an essential role as an electron carrier in the respiratory chain of many bacteria. We have previously shown that its biosynthesis in Escherichia coli involves a new intermediate, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC), and requires an additional enzyme to convert this intermediate into (1 R,6 R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC). Here, we report the identification and characterization of MenH (or YfbB), an enzyme previously proposed to catalyze a late step in menaquinone biosynthesis, as the SHCHC synthase. The synthase catalyzes a proton abstraction reaction that results in 2,5-elimination of pyruvate from SEPHCHC and the formation of SHCHC. It is an efficient enzyme ( k cat/ K M = 2.0 x 10 (7) M (-1) s (-1)) that provides a smaller transition-state stabilization than other enzymes catalyzing proton abstraction from carbon acids. Despite its lack of the proposed thioesterase activity, the SHCHC synthase is homologous to the well-characterized C-C bond hydrolase MhpC. The crystallographic structure of the Vibrio cholerae MenH protein closely resembles that of MhpC and contains a Ser-His-Asp triad typical of serine proteases. Interestingly, this triad is conserved in all MenH proteins and is essential for the SHCHC synthase activity. Mutational analysis found that the catalytic efficiency of the E. coli protein is reduced by 1.4 x 10 (3), 2.1 x 10 (5), and 9.3 x 10 (3) folds when alanine replaces serine, histidine, and aspartate of the triad, respectively. These results show that the SHCHC synthase is closely related to alpha/beta hydrolases but catalyzes a reaction mechanistically distinct from all known hydrolase reactions.

    Topics: Catalysis; Conserved Sequence; Cyclohexanes; Escherichia coli Proteins; Gene Expression Regulation, Bacterial; Oxo-Acid-Lyases; Salicylates; Succinates; Vitamin K 2

2008
Menaquinone biosynthesis in Escherichia coli: identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity.
    Biochemistry, 2007, Sep-25, Volume: 46, Issue:38

    Menaquinone is an electron carrier in the respiratory chain of Escherichia coli during anaerobic growth. Its biosynthesis involves (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) as an intermediate, which is believed to be derived from isochorismate and 2-ketoglutarate by one of the biosynthetic enzymes-MenD. However, we found that the genuine MenD product is 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic acid (SEPHCHC), rather than SHCHC. This is supported by the following findings: (i) isochorismate consumption and SHCHC formation are not synchronized in the enzymic reaction, (ii) the rate of SHCHC formation is independent of the enzyme concentration, (iii) SHCHC is not formed in weakly acidic or neutral solutions in which the isochorismate substrate is readily consumed by MenD, and (iv) the MenD turnover product, formed under conditions disabling SHCHC formation, possesses spectroscopic characteristics consistent with the structure of SEPHCHC and spontaneously undergoes 2,5-elimination to form SHCHC and pyruvate in weakly basic solutions. Two properties of the intermediate, ultraviolet transparency and chemical instability, provide a rationale for the fact that SHCHC has been consistently mistaken as the MenD product. In accordance with these findings, MenD was rediscovered to be a highly efficient enzyme with a high second-order rate constant and should be renamed SEPHCHC synthase. Intriguingly, the enzymatic activity responsible for conversion of SEPHCHC into SHCHC appears not to associate with any of the known enzymes in menaquinone biosynthesis but is present in the crude extract of E. coli K12, suggesting that a genuine SHCHC synthase remains to be identified to fully elucidate the ubiquitous biosynthetic pathway.

    Topics: Biosynthetic Pathways; Catalysis; Chorismic Acid; Chromatography, High Pressure Liquid; Cyclohexanecarboxylic Acids; Cyclohexanes; Cyclohexenes; Escherichia coli; Escherichia coli Proteins; Hydrogen-Ion Concentration; Keto Acids; Oxo-Acid-Lyases; Reference Standards; Salicylates; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Substrate Specificity; Succinates; Tandem Mass Spectrometry; Terminology as Topic; Vitamin K 2

2007