melitten and laurdan

melitten has been researched along with laurdan* in 2 studies

Other Studies

2 other study(ies) available for melitten and laurdan

ArticleYear
Melittin Induces Local Order Changes in Artificial and Biological Membranes as Revealed by Spectral Analysis of Laurdan Fluorescence.
    Toxins, 2020, 11-08, Volume: 12, Issue:11

    Antimicrobial peptides (AMPs) are a class of molecules widely used in applications on eukaryotic and prokaryotic cells. Independent of the peptide target, all of them need to first pass or interact with the plasma membrane of the cells. In order to have a better image of the peptide action mechanism with respect to the particular features of the membrane it is necessary to better understand the changes induced by AMPs in the membranes. Laurdan, a lipid membrane probe sensitive to polarity changes in the environment, is used in this study for assessing changes induced by melittin, a well-known peptide, both in model and natural lipid membranes. More importantly, we showed that generalized polarization (GP) values are not always efficient or sufficient to properly characterize the changes in the membrane. We proved that a better method to investigate these changes is to use the previously described log-normal deconvolution allowing us to infer other parameters: the difference between the relative areas of elementary peak (ΔS

    Topics: 2-Naphthylamine; Animals; Cell Membrane; Fluorescent Dyes; Hep G2 Cells; HT29 Cells; Humans; Laurates; Melitten; Membrane Fluidity; Membranes, Artificial; Mice; Molecular Dynamics Simulation; Spectrometry, Fluorescence

2020
The use of solvent relaxation technique to investigate headgroup hydration and protein binding of simple and mixed phosphatidylcholine/surfactant bilayer membranes.
    Biochimica et biophysica acta, 2007, Volume: 1768, Issue:5

    The subject of this report was to investigate headgroup hydration and mobility of two types of mixed lipid vesicles, containing nonionic surfactants; straight chain Brij 98, and polysorbat Tween 80, with the same number of oxyethylene units as Brij, but attached via a sorbitan ring to oleic acid. We used the fluorescence solvent relaxation (SR) approach for the purpose and revealed differences between the two systems. Fluorescent solvent relaxation probes (Prodan, Laurdan, Patman) were found to be localized in mixed lipid vesicles similarly as in pure phospholipid bilayers. The SR parameters (i.e. dynamic Stokes shift, Deltanu, and the time course of the correlation function, C(t)) of such labels are in the same range in both kinds of systems. Each type of the tested surfactants has its own impact on water organization in the bilayer headgroup region probed by Patman. Brij 98 does not modify the solvation characteristics of the dye. In contrast, Tween 80 apparently dehydrates the headgroup and decreases its mobility. The SR data measured in lipid bilayers in presence of Interferon alfa-2b reveal that this protein, a candidate for non-invasive delivery, affects the bilayer in a different way than the peptide melittin. Interferon alfa-2b binds to mixed lipid bilayers peripherally, whereas melittin is deeply inserted into lipid membranes and affects their headgroup hydration and mobility measurably.

    Topics: 2-Naphthylamine; Animals; Chemistry Techniques, Analytical; Fluorescent Dyes; Laurates; Lipid Bilayers; Melitten; Palmitic Acids; Phosphatidylcholines; Plant Oils; Polyethylene Glycols; Polysorbates; Protein Binding; Solvents; Spectrometry, Fluorescence; Surface-Active Agents; Time Factors; Water

2007